Взаимодействие аминокислот с азотистой кислотой. Аминокислоты — номенклатура, получение, химические свойства

Аминокислоты - гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу - NH 2 и карбоксиль­ную группу -СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа - NH 2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа -СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты - это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R- они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки -NH-СО-, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды . В таких соединениях группы -NH-СО- на­зывают пептидными.

По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н + .

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H + .

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N 2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах, втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

Получение анилина

1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:

C 6 H 5 -NO 2 + 3Fe + 7HCl = +Cl- + 3FeCl 2 + 2H 2 O

Cl — + NaOH = C 6 H 5 -NH 2 + NaCl + H 2 O

В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.

Реакция хлорбензола с аммиаком:

С 6 H 5 −Cl + 2NH 3 → C 6 H 5 NH 2 + NH 4 Cl

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH 2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH 2) x R(COOH) y , где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Кислотные свойства аминокислот

Образование солей с щелочами и карбонатами щелочных металлов

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O

Основные свойства аминокислот

1. Oбразование солей при взаимодействии с кислотами

NH 2 CH 2 COOH + HCl → + Cl —

2. Взаимодействие с азотистой кислотой

NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH 2 CH 2 COOH + CH 3 I → + I —

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:

И аланина:

Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.

Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:

Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.

Образование внутренних солей аминокислот в водном растворе

В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов):

Получение аминокислот

1) Реакция хлорпроизводных карбоновых кислот с аммиаком:

Cl-CH 2 -COOH + 2NH 3 = NH 2 -CH 2 -COOH + NH 4 Cl

2) Расщепление (гидролиз) белков под действием растворов сильных минеральных кислот и щелочей.

>> Химия: Аминокислоты

Общую формулу простейших аминокислот можно записать так:

Н2N- СН-СООН
I
R

Так как аминокислоты содержат две различные функциональные группы, которые оказывают влияние друг на друга, их реакции отличаются от характерных свойств карбоновых кислот и аминов.

Получение

Аминокислоты можно получить из карбоновых кислот, заместив в их радикале атом водорода на галоген , а затем на аминогруппу при взаимодействии с аммиаком. Смесь аминокислот обычно получают кислотным гидролизом белков.

Свойства

Аминогруппа -NН2 определяет основные свойства аминокислот, так как способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа -СООН (карбоксильная группа) определяет кислотные свойства этих соединений. Следовательно, аминокислоты - это амфотерные органические соединения.

Со щелочами они реагируют как кислоты. С сильными кислотами - как основания-амины .

Кроме того, аминогруппа в молекуле аминокислоты вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль:

Так как аминокислоты в водных растворах ведут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концентрацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависимости от состава радикала R- они могут быть сладкими, горькими или безвкусными.

Аминокислоты обладают оптической активностью, так как содержат атомы углерода (асимметрические атомы), связанные с четырьмя различными заместителями (исключение составляет амино-уксусная кислота - глицин). Асимметрический атом углерода обозначают звездочкой.

Как вы уже знаете, оптически активные вещества встречаются в виде пар антиподов-изомеров, физические и химические свойства которых одинаковы, за исключением одного - способности вращать плоскость поляризованного луча в противоположные стороны. Направление вращения плоскости поляризации обозначается знаком (+) - правое вращение, (-) - левое вращение.

Различают D-аминокислоты и L-аминокислоты. Расположение аминогруппы NH2 в проекционной формуле слева соответствует L-конфигурации, а справа - D-конфигурации. Знак вращения не связан с принадлежностью соединения к L- или D-ряду. Так, L-ce-рин имеет знак вращения (-), а L-аланин - (+).

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно половина из этих аминокислот относятся к незаменимым, так как они не синтезируются в организме человека. Незаменимыми являются такие аминокислоты, как валин, лейцин, изолейцин, фени-лалалин, лизин, треонин, цистеин, метионин, гистидин, триптофан. В организм человека данные вещества поступают с пищей (табл. 7). Если их количество в пище будет недостаточным, нормальное развитие и функционирование организма человека нарушаются. При отдельных заболеваниях организм не в состоянии синтезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группировки-NH-СО-, например:

H2N-(СН2)5-СООН + Н-NH-(СН2)5-СООН ->
аминокапроновая кислота

H2N-(СН2)5-СО-NH-(СН2)5-СООН + Н20

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов.

К ним, кроме названного выше синтетического волокна капрон, относят, например, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических волокон пригодны аминокислоты с расположением амино- и карбоксильной групп на концах молекул (подумайте почему).

Таблица 7. Суточная потребность организма человека в аминокислотах

Полиамиды а-аминокислот называются пептидами. В зависимости от числа остатков аминокислот различают дипептиди, трипептиды, полипептиды. В таких соединениях группы -NР-СО- называют пептидными.

Изомерия и номенклатура

Изомерия аминокислот определяется различным строением углеродной цепи и положением аминогруппы. Широко распространены также названия аминокислот, в которых положения аминогруппы обозначаются буквами греческого алфавита. Так, 2-аминобутановую кислоту можно назвать также а-аминомасляной кислотой:

В биосинтезе белка в живых организмах участвуют 20 аминокислот, для которых применяют чаще исторические названия. Эти названия и принятые для них русские и латинские буквенные обозначения приведены в таблице 8.


1. Запишите уравнения реакций аминопропионовой кисло-; ты с серной кислотой и гидроксидом натрия, а также с метиловым спиртом. Всем веществам дайте названия по международной номенклатуре.

2. Почему аминокислоты являются гетерофункциональными соединениями?

3. Какими особенностями строения должны обладать аминокислоты, используемые для синтеза волокон, и аминокислоты, участвующие в биосинтезе белков в клетках живых организмов?

4. Чем отличаются реакции поликонденсации от реакций полимеризации? В чем их сходство?

5. Как получают аминокислоты? Запишите уравнения реакций получения аминопропионовой кислоты из пропана.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Лекция № 1765

АМИНОКИСЛОТЫ. ПЕПТИДЫ

  • Методы получения.
  • Химические свойства.
  • Пептиды

  • Лекция № 16

    АМИНОКИСЛОТЫ. ПЕПТИДЫ

    1. Методы получения.
    2. Химические свойства.
    3. Аминокислоты, входящие в состав белков.
    4. Пептиды

    Аминокислоты – гетерофункциональные соединения, содержащие
    карбоксильную и аминогруппы. По взаимному расположению функциональных групп
    различают a -,b -, g — и т.д. аминокислоты.
    Аминокислоты, содержащие аминогруппу на конце цепи, называют
    w -аминокислотами.

    1. Методы получения

    !) Аммонолиз галогензамещенных кислот.

    a -аминокислот из доступных a -галогензамещенных кислот.

    2) Метод Штеккера- Зелинского

    Включает стадии образования аминонитрила при
    взаимодействии альдегида с HCN и NH 3 c последующим гидролизом его в аминокислоту. В качестве
    реагента применяют смесь NaCN и NH
    4 Cl.

    Метод применим для синтеза только a -аминокислот.

    3) Восстановительное аминирование
    оксокислот

    4) Присоединение аммиака к a ,b -непредельным карбоновым кислотам.

    Метод применим для синтеза b -аминокислот.

    5) Из оксимов циклических кетонов
    перегруппировкой Бекмана.

    Метод используется для синтеза w -аминокислот.

    2. Химические
    свойства

    Аминокислоты дают реакции, характерные для карбоксильной
    и аминогрупп, и, кроме того, проявляют специфические свойства, которые
    определяются наличием двух функциональных групп и их взаимным
    расположением.

    2.1. Кислотно-основные
    свойства

    Аминокислоты содержат кислотный и основный
    центры и являются амфотерными соединениями. В кристаллическом состоянии они
    существуют в виде внутренних солей (биполярных ионов), которые образуются в
    результате внутримолекулярного переноса протона от более слабого основного
    центра (СОО — ) к более сильному
    основному центру (NH
    2).

    Ионное строение аминокислот подтверждается их
    физическими свойствами. Аминокислоты – нелетучие кристаллические вещества с
    высокими температурами плавления. Они нерастворимы в неполярных органических
    растворителях и растворимы в воде. Их молекулы обладают большими дипольными
    моментами.

    Форма существования аминокислот в водных
    растворах зависит от рН. В кислых растворах аминокислоты присоединяют протон и
    существуют преимущественно в виде катионов. В щелочной среде биполярный ион
    отдает протон и превращается в анион.

    При некотором значении рН, строго определенном
    для каждой аминокислоты, она существует преимущественно в виде биполярного иона.
    Это значение рН называют изоэлектрической точкой (рI ). В
    изоэлектрической точке аминокислота не имеет заряда и обладает наименьшей
    растворимостью в воде. Катионная форма аминокислоты содержит два кислотных
    центра (COOH и NH
    3 + ) и
    характеризуется двумя константами диссоциации рК а1 и рК а2 .
    Значение рI определяется по уравнению:

    2.2. Реакции по
    аминогруппе

    Дезаминирование

    Аминокислоты содержат первичную аминогруппу и подобно первичным аминам
    взаимодействуют с азотистой кислотой с выделением азота. При этом происходит
    замещение аминогруппы на гидроксильную.

    RCH(NH 2)COOH + HNO 2 ® RCH(OH)COOH + N 2 ­ + H 2 O

    Реакция используется для количественного
    определения аминокислот по объему выделившегося азота (метод Ван-Слайка).

    Алкилирование и
    арилирование

    При взаимодействии аминокислот с избытком
    алкилгалогенида происходит исчерпывающее алкилирование аминогруппы и образуются
    внутренние соли.

    Аминокислоты арилируются 2,4-динитрофторбензолом
    (ДНФБ) в щелочной среде. Реакция протекает как нуклеофильное замещение в
    активированном ароматическом кольце.

    Реакция используется для установления
    аминокислотной последовательности в пептидах.

    Ацилирование

    Аминокислоты взаимодействуют с ангидридами и
    хлорангидридами с образованием N-ацильных производных.

    Реакция используется для защиты аминогруппы в
    синтезе пептидов. Такая защита должна легко сниматься, а амиды, как известно,
    гидролизуются в жестких условиях. При разработке методов синтеза пептидов были
    найдены защитные группы, которые легко удаляются путем гидролиза или
    гидрогенолиза.

    Карбобензоксизащита:

    трет -Бутоксикарбонильная защита
    (БОК-защита).

    Легкость снятия защиты обусловлена устойчивостью
    бензил- и трет -бутил-катионов, которые образуются в качестве
    интермедиатов.

    2.3. Реакции по карбоксильной
    группе

    Декарбоксилирование

    При сухой перегонке в присутствии гидроксида
    бария аминокислоты декарбоксилируются с образованием аминов.

    Этерификация

    Аминокислоты взаимодействуют со спиртами в присутствии газообразного HCl как
    катализатора с образованием сложных эфиров.

    В отличие от самих аминокислот, их сложные эфиры
    – легко летучие соединения и могут быть разделены путем перегонки или
    газожидкостной хроматографии, что используется для анализа и разделения смесей
    аминокислот, полученных при гидролизе белков.

    Получение галогенангидридов и
    ангидридов

    При действии на защищенные по аминогруппе
    аминокислоты галогенидов фосфора или серы образуются хлорангидриды.

    Реакция используется для активации карбоксильной
    группы при нуклеофильном замещении. Чаще для этой цели получают смешанные
    ангидриды, которые являются более селективными ацилирующими реагентами.

    Реакция используется для активации аминогруппы в
    синтезе пептидов.

    2.4. Специфические реакции
    аминокислот

    Реакции с одновременным участием карбоксильной и
    аминогрупп идут, как правило, с образованием продуктов, содержащих
    термодинамически устойчивые 5-ти- и 6-тичленные гетероциклы.

    Комплексообразование

    a -Аминокислоты
    образуют прочные хелатные комплексы с ионами переходных металлов (Cu, Ni, Co, Cr
    и др.).

    Отношение аминокислот к
    нагреванию

    Превращения аминокислот при нагревании зависят от взаимного расположения
    карбоксильной и аминогруппы и определяются возможностью образования
    термодинамически стабильных 5-ти- 6-тичленных циклов

    a -Аминокислоты
    вступают в реакцию межмолекулярного самоацилирования. При этом образуются
    циклические амиды – дикетопиперазины.

    b -Аминокислоты при
    нагревании переходят
    a ,b -непредельные кислоты.

    g — и d -Аминокислот претерпевают
    внутримолекулярное ацилирование с образованием циклических амидов – лактамов
    .

    Нингидриновая реакция

    При взаимодействии a -аминокислот с трикетоном – нингидрином происходит одновременное окислительное
    дезаминирование и декарбоксилирование с образованием альдегида и окрашенного
    продукта конденсации.

    Реакция используется для количественного анализа
    аминокислот методом фотометрии.

    1. a -Аминокислоты,
      входящие в состав белков

    3.1. Строение и
    классификация

    Природные аминокислоты отвечают общей формуле RCH(NH 2 )COOH и отличаются строением радикала R. Формулы и
    тривиальные названия важнейших аминокислот приведены в таблице. Для
    биологического функционирования аминокислот в составе белков определяющим
    является полярность радикала R. По этому признаку аминокислоты разделяют на
    следующие основные группы (см. таблицу).

    Таблица. Важнейшие a -аминокислоты
    RCH(NH 2)COOH


    Формула

    Название

    Обозначение

    pI

    Аминокислоты, содержащие
    неполярный радикал R



    Глицин

    Gly

    5,97


    Аланин

    Ala

    6,0


    Валин

    Val

    5,96


    Лейцин

    Leu

    5,98


    Изолейцин

    Ile

    6,02


    Фенилаланин

    Phe

    5,48


    Триптофан

    Trp

    5,89



    Пролин

    Pro

    6,30


    Метионин

    Met

    5,74


    Цистин

    (Cys) 2

    5,0


    неионогенный радикал R




    Серин

    Ser

    5,68


    Треонин


    5,60


    Гидроксипролин

    Hyp

    5,8


    Аспаргин

    Asn

    5,41


    Глутамин

    Gln

    5,65

    Аминокислоты, содержащие полярный
    положительно заряженный радикал R



    Лизин

    Lys

    9,74


    5-Гидроксилизин

    9,15


    Аргинин

    Arg

    10,76


    Гистидин

    His

    7,59

    Аминокислоты, содержащие полярный
    отрицательно заряженный радикал R



    Аспаргиновая
    кислота


    Asp

    2,77


    Глутаминовая
    кислота


    Gly

    3,22


    Тирозин

    Tyr

    5,66


    Цистеин

    Cys

    5,07

    Аминокислоты, содержащие неполярный радикал
    R.
    Такие группы
    располагаются внутри
    молекулы белка и обуславливают гидрофобные взаимодействия.

    Аминокислоты, содержащие полярный
    неионогенный радикал R.
    Аминокислоты этого типа имеют в составе бокового радикала полярные группы, не
    способные к ионизации в водной среде (спиртовый гидроксил, амидная группа).
    Такие группы могут располагаться как внутри, так и на поверхности молекулы
    белка. Они участвуют в образовании водородных связей с другими полярными
    группами.

    Аминокислоты, содержащие радикал R, способный
    к ионизации в водной среде с образованием положительно или отрицательно
    заряженных групп.
    Такие аминокислоты содержат в боковом радикале
    дополнительный основный или кислотный центр, который в водном растворе может
    соответственно присоединять или отдавать протон.

    В белках ионогенные группы этих аминокислот
    располагаются, как правило, на поверхности молекулы и обуславливают
    электростатические взаимодействия.

    3.2.
    Стереоизомерия.

    Все природные a -аминокислоты (кроме глицина)
    являются хиральными соединениями. По конфигурации хирального центра в положении
    2 аминокислоты относят D- или L-ряду.

    Природные аминокислоты относятся к
    L-ряду.

    Большинство аминокислот содержат один хиральный
    центр и имеют два стереоизомера. Аминокислоты изолейцин, треонин,
    гидроксипролин, 5-гидроксилизин и цистин содержат два хиральных центра и имеют
    (кроме цистина) 4 стереоизомера, из которых только один встречается в составе
    белков.

    Так, из 4-х стереоизомеров треонина в
    природе встречается только (2S,3R)-2-амино-3-гидроксибутановая кислота.

    Использование для построения белков только
    одного вида стереоизомеров имеет важное значение для формирования их
    пространственной структуры и обеспечения биологической активности.

    a -Аминокислоты,
    полученные синтетическим путем, представляют рацемические смеси, которые
    необходимо разделять. Наиболее предпочтительным является ферментативный способ
    разделения с помощью ферментов ацилаз, способных гидролизовать N-ацетильные
    производные только L-
    a -аминокислот. Ферментативное расщепление проводят по
    следующей схеме.

    Сначала рацемическую аминокислоту ацилируют
    уксусным ангидридом:

    Затем рацемическую смесь ацетильных производных
    подвергают ферментативной обработке. При этом гидролизуется ацетильное
    производное только L-аминокислоты:

    Полученная после ферментативного смесь легко
    разделяется, так как свободная L-аминокислота растворяется и в кислотах, и в
    щелочах, а ацилированная – только в щелочах.

    3.3. Кислотно-основные
    свойства.

    По кислотно-основным свойствам аминокислоты
    разделяют на три группы.

    Нейтральные аминокислоты не содержат в
    радикале R дополнительных кислотных или основных центров, способных к ионизации
    в водной среде. В кислой среде они существуют в виде однозарядного катиона и
    являются двухосновными кислотами по Бренстеду. Как видно на примере аланина,
    изоэлектрическая точка у нейтральных аминокислот не равна 7, а лежит в интервале
    5,5 – 6,3.

    pI=1/2(2,34+9,69)=6,01

    Основные аминокислоты содержат в
    радикале R дополнительный основный центр. К ним относятся лизин, гистидин и
    аргинин. В кислой среде они существуют в виде дикатиона и являются трехосновными
    кислотами. Изоэлектрическая точка основных аминокислот, как видно на примере
    лизина, лежит в области рН выше 7.

    pI= 1/2(9,0+10,05)=9,74

    Кислые аминокислоты содержат в
    радикале R дополнительный кислотный центр. К ним относятся аспаргиновая и
    глутаминовая кислоты. В кислой среде они существуют в виде катиона и являются
    трехосновными кислотами. Изоэлектрическая точка этих аминокислот лежит в области
    рН много ниже 7.

    pI= 1/2(2,09+3,86)=2,77

    Тирозин и цистеин содержат в боковых радикалах
    слабые кислотные центры, способные к ионизации при высоких значениях рН.

    Важное значение имеет тот факт, что при
    физиологическом значении рН (~7) ни одна аминокислота не находится в
    изоэлектрической точке. В организме все аминокислоты ионизированы, что
    обеспечивает им хорошую растворимость в воде.

    Различие в кислотно-основных свойствах
    используется для разделения аминокислот методом электрофореза и ионообменной
    хроматографии. При данном значении рН разные аминокислоты могут иметь разный по
    величине и знаку электрический заряд. Например, при рН6 лизин имеет заряд +1 и
    движется к катоду, аспаргиновая кислота имеет заряд –1 и перемещается к аноду, а
    аланин находится в изоэлектрической точке и не перемещается в электрическом поле. Таким образом при рН6 они могут быть
    разделены с помощью электрофореза.

    Для разделения аминокислот методом ионообменной
    хроматографии используют катионообменные смолы (сульфированный полистирол).
    Процесс ведут в кислой среде, когда аминокислоты находятся катионной
    форме.

    Скорость продвижения аминокислот по
    хроматографической колонке зависит от силы их электростатических и гидрофобных
    взаимодействий со смолой. Наиболее прочно связываются со смолой основные
    аминокислоты, имеющие наибольший положительный заряд, наименее прочно – кислые
    аминокислоты. Наибольшим гидрофобным связыванием со смолой обладают аминокислоты
    с неполярными боковыми радикалами, особенно ароматическими. Таким образом,
    порядок элюирования аминокислот следующий. Легче других элюируются кислые
    аминокислоты (Asp и Glu), следом за ними идут аминокислоты, содержащие полярные
    неионогенные группы (Ser, Thr, Asn, Gln), затем из колонки вымываются
    аминокислоты с неполярными боковыми радикалами (Phe, Trp, Ile и др.) и в
    последнюю очередь элюируются основные аминокислоты (His, Lys, Arg).


      3.4. Реакции аминокислот in
      vivo

    Восстановительное аминирование – метод
    синтеза a -аминокислот из a -оксокислот при участии кофермента НАД Н в качестве
    восстанавливающего реагента.

    Трасаминирование основной
    путь биосинтеза аминокислот. При трансаминировании происходит взаимообмен двух
    функциональных групп – аминной и карбонильной между аминокислотой и кетокилотой.
    При этом нужная для организма аминокислота 1 синтезируется из аминокислоты 2,
    имеющейся в клетках в избыточном коичестве. Реакция осуществляется при участии
    ферментов трансаминаз и кофермента пиридоксальфосфата.

    Декарбоксилирование

    Аминокислоты декарбоксилируются под действием
    ферментов декарбоксилаз при участи кофермента пиридоксальфосфата. При этом
    образуются биогенные амины.

    Биогенные амины обладают ярко выраженной
    биологической активностью. Важнейшими из них являются — коламин (предшественник
    в синтезе холина и нейромедиатора ацетилхолина), гистамин (обеспечивает
    аллергические реакции организма), g -аминомасляная кислота (нейромедиатор), адреналин
    (гормон надпочечников, нейромедиатор)

    Дезаминирование

    Неокислительное дезаминирование происходит путем
    отщепления аммиака под действием ферментов с образованием a ,b -непредельных кислот.

    Окислительное дезаминирование происходит
    при участии ферментов оксидаз и кофермента НАД + , который выступает в качестве окислителя. В результате
    выделяется аммиак и образуется соответствующая кетокислота.

    С помощью реакций дезаминирования снижается
    избыток аминокислот в организме.

    4. Пептиды

    Петиды – это полиамиды, построенные из a -аминокислот. По числу аминокислотных остатков в
    молекуле пептида различают дипептиды, трипептиды, тетрапептиды и т.д.
    Пептиды, содержащие до 10 аминокислотных остатков, называют олигопептидами , более 10 аминокислотных остатков – полипептидами .
    Природные полипептиды, включающие более 100 аминокислотных остатков, называют белками
    .

    4.1. Строение
    пептидов

    Формально пептиды можно рассматривать как продукты поликонденсации
    аминокислот.

    Аминокислотные остатки в пептиде связаны
    амидными (пептидными ) связями. Один конец цепи, на котором находится
    аминокислота со свободной аминогруппой, называют N-концом . Другой конец,
    на котором находится аминокислота со свободной карбоксильной группой, называют С-концом . Пептиды принято записывать и называть, начиная с
    N-конца.

    Название пептида строят на основе тривиальных
    названий, входящих в его состав аминокислотных остатков, которые перечисляют,
    начиная с N-конца. При этом в названиях всех аминокислот за исключением
    С-концевой суффикс “ин” заменяют на суффикс “ил”. Для сокращенного обозначения
    пептидов используют трехбуквенные обозначения входящих в его состав
    аминокислот.

    Пептид характеризуется аминокислотным
    составом
    и аминокислотной последовательностью .

    Аминокислотный состав пептида может быть
    установлен путем полного гидролиза пептида (расщепления до аминокислот) с
    последующим качественным и количественным анализом образовавшихся аминокислот
    методом ионобменной хроматографии или ГЖХ-анализом сложных эфиров аминокислот.
    Полный гидролиз пептидов проводят в кислой среде при кипячении их с 6н.
    HCl.

    Одному и тому же аминокислотному составу
    отвечает несколько пептидов. Так, из 2-х разных аминокислот может быть построено
    2 дипептида, из трех разных аминокислот – 6 трипептидов, из n разных аминокислот
    n! пептидов одинакового состава. Например, составу Gly:Ala:Val=1:1:1 отвечают
    следующие 6 трипептидов.

    Gly-Ala-Val Gly- Val-Ala Val-Gly-Ala Val-Ala-Gly Ala-Gly-Val
    Ala-Val-Glu

    Таким образом, для полной характеристики пептида
    необходимо знать его аминокислотный состав и аминокислотную
    последовательность.

    4.2. Определение аминокислотной
    последовательности

    Для определения аминокислотной
    последовательности используют комбинацию двух методов: определение концевых
    аминокислот и частичный гидролиз .

    Определение N-концевых
    аминокислот.

    Метод Сегнера . Пептид обрабатывают 2,4-динитрофтробензолом (ДНФБ), а
    затем полностью гидролизуют. Из гидролизата выделяют и идентифицируют
    ДНФ-производное N-концевой аминокислоты.

    Метод Эдмана состоит во
    взаимодействии N-концевой аминокислоты с фенилизотиоцианатом в щелочной среде.
    При дальнейшей обработке слабой кислотой без нагревания происходит отщепление от
    цепи “меченой” концевой аминокислоты в виде фенилгидантоинового (ФТГ)
    производного.

    Преимущество этого метода состоит в том, что при
    отщеплении N-концевой аминокислоты пептид не разрушается и операцию по
    отщеплению можно повторять. Метод Эдмана используют в автоматическом приборе –
    секвенаторе, с помощью которого можно осуществить 40 – 50 стадий отщепления,
    идентифицируя полученные на каждой стадии ФТГ-производные методом газожидкостной
    хроматографии.

    Частичный гидролиз полипептидов

    При частичном гидролизе пептиды расщепляются с
    образованием более коротких цепей. Частичный гидролиз проводят с помощью
    ферментов, которые гидролизуют пептидные связи избирательно, например, только с
    N-конца (аминопептидазы ) или только с С-конца (карбоксипептидазы ).
    Существуют ферменты, расщепляющие пептидные связи только между определенными
    аминокислотами. Меняя условия гидролиза, можно разбить пептид на различные
    фрагменты, которые перекрываются по составляющим их аминокислотным остаткам.
    Анализ продуктов частичного гидролиза позволяет воссоздать структуру исходного
    пептида. Рассмотрим простейший пример установления структуры трипептида.
    Частичный гидролиз по двум разным направлениям трипептида неизвестного строения
    дает продукты представленные на схеме.

    Единственный трипептид, структура которого не
    противоречит продуктам частичного гидролиза – Gly-Ala-Phe.

    Установление аминокислотной последовательности
    пептидов, содержащих несколько десятков аминокислотных остатков, – более сложная
    задача, которая требует комбинации различных методов.

    4.3. Синтез
    петидов

    Синтез пептида с заданной аминокислотной
    последовательностью – чрезвычайно сложная задача. В простейшем случае синтеза
    дипептида из 2-х разных аминокислот возможно образование 4-х разных
    продуктов.

    В настоящее время разработана стратегия синтеза
    пептидов, основанная на использовании методов активации и защиты функциональных групп на соответствующих этапах синтеза. Процесс синтеза
    дипептида включает следующие стадии:

      1. защита аминогруппы N-концевой
        аминокислоты;
      2. активация карбоксильной группы N-концевой
        аминокислоты;
      3. конденсация модифицированных
        аминокислот
      4. снятие защитных групп


    Таким образом, последовательно присоединяя
    аминокислоты, шаг за шагом наращивают цепь полипептида. Такой синтез очень
    длителен, трудоемок и дает низкий выход конечного продукта. Основные потери
    связаны с необходимостью выделения и очистки продуктов на каждой стадии.

    Этих недостатков лишен используемый в настоящее
    время твердофазный синтез пептидов . На первой стадии защищенная по
    аминогруппе С-концевая аминокислота закрепляется на твердом полимерном носителе
    (полистироле, модифицированном введением групп –CH 2 Cl). После снятия защиты проводят ацилирование
    аминогруппы закрепленной на носителе аминокислоты другой аминокислотой, которая
    содержит активированную карбоксильную и защищенную аминогруппу. После снятия
    защиты проводят следующую стадию ацилирования. Отмывание продукта от примесей
    проводят прямо на носителе и лишь после окончания синтеза полипептид снимают с
    носителя действием бромистоводородной кислоты. Твердофазный синтез
    автоматизирован и проводится с помощью приборов – автоматических
    синтезаторов.

    ;

    Методом твердофазного синтеза получено большое
    количество пептидов, содержащих 50 и более аминокислотных остатков, в том числе
    инсулин (51 аминокислотный остаток) и рибонуклеаза (124 аминокислотных
    остатка).

    Аминокислотами называются органические соединения, содержащие в молекуле функциональные группы: амино- и карбоксильную.

    Номенклатура аминокислот. По систематической номенклатуре названия аминокислот образуются из названий соответствующих карбоновых кислот и добавления слова «амино». Положение аминогруппы указывают цифрами. Отсчет ведется от углерода карбоксильной группы.

    Изомерия аминокислот. Их структурная изомерия определяется положением аминогруппы и строением углеродного радикала. В зависимости от положенияNH 2 -группы различают-,- и-аминокислоты.

    Из -аминокислот строятся молекулы белка.

    Для них также характерна изомерия функциональной группы (межклассовыми изомерами аминокислот могут быть сложные эфиры аминокислот или амиды гидроксикислот). Например, для 2-аминопропановой кислоты СН 3 СН(NH) 2 COOHвозможны следующие изомеры

    Физические свойства α-аминокислот

    Аминокислоты – бесцветные кристаллические вещества, нелетучие (малое давление насыщенного пара), плавящиеся с разложением при высоких температурах. Большинство их хорошо растворимо в воде и плохо в органических растворителях.

    Водные растворы одноосновных аминокислот имеют нейтральную реакцию. -Аминокислоты можно рассматривать как внутренние соли (биполярные ионы): + NH 3 CH 2 COO  . В кислой среде они ведут себя как катионы, в щелочной – как анионы. Аминокислоты являются амфотерными соединениями, проявляющими одновременно кислотные и основные свойства.

    Способы получения -аминокислот

    1. Действие аммиака на соли хлорзамещенных кислот.

    Cl CH 2 COONH 4 + NH 3
    NH 2 CH 2 COOH

    2. Действие аммиака и синильной кислоты на альдегиды.

    3. Гидролизом белков получают 25 различных аминокислот. Разделение их – очень не простая задача.

    Способы получения -аминокислот

    1. Присоединение аммиака к непредельным карбоновым кислотам.

    СН 2 = СНСООН + 2NH 3  NH 2 CH 2 CH 2 COONH 4 .

    2. Синтез на базе двухосновной малоновой кислоты.

    Химические свойства аминокислот

    1. Реакции по карбоксильной группе.

    1.1. Образование эфиров при действии спиртов.

    2. Реакции по аминогруппе.

    2.1. Взаимодействие с минеральными кислотами.

    NH 2 CH 2 COOH + HCl  H 3 N + CH 2 COOH + Cl 

    2.2. Взаимодействие с азотистой кислотой.

    NH 2 CH 2 COOH + HNO 2  HO CH 2 COOH + N 2 + H 2 O

    3. Превращение аминокислот при нагревании.

    3.1.-аминокислоты образуют циклические амиды.

    3.2.-аминокислоты отщепляют аминогруппу и атом водорода у-углеродного атома.

    Отдельные представители

    Глицин NH 2 CH 2 COOH(гликокол). Одна из наиболее распространенных аминокислот, входящих в состав белков. При обычных условиях – бесцветные кристаллы с Т пл = 232236С. Хорошо растворима в воде, нерастворима в абсолютном спирте и эфире. Водородный показатель водного раствора6,8; рК а = 1,510  10 ; рК в = 1,710  12 .

    -аланин – аминопропионовая кислота

    Широко распространена в природе. Встречается в свободном виде в плазме крови и в составе большинства белков. Т пл = 295296С, хорошо растворима в воде, плохо в этаноле, нерастворима в эфире. рК а (СООН)= 2,34; рК а (NH) = 9,69.

    -аланин NH 2 CH 2 CH 2 COOH– мелкие кристаллы с Т пл = 200С, хорошо растворима в воде, плохо в этаноле, нерастворима в эфире и ацетоне. рК а (СООН) = 3,60; рК а (NH) = 10,19; в белках отсутствует.

    Комплексоны. Этот термин используют для названия ряда -аминокислот, содержащих две или три карбоксильные группы. Наиболее простые:

    Наиболее распространенный комплексон – этилендиаминтетрауксусная кислота.

    Ее динатриевая соль – трилон Б – чрезвычайно широко применяется в аналитической химии.

    Связь между остатками -аминокислот называют пептидной, а сами образующиеся соединения пептидами.

    Два остатка -аминокислот образуют дипептид, три – трипептид. Много остатков образуют полипептиды. Полипептиды, как и аминокислоты, амфотерны, каждому свойственна своя изоэлектрическая точка. Белки - полипептиды.

    
    Top