Что такое ядерный матрикс. Одномембранные органоиды

Составленная периферической пластинкой и пронизывающими ядро тяжами. В настоящий момент функция ядерного скелета окончательно не выяснена.

Считается, что матрикс построен преимущественно из негистоновых белков, формирущих сложную развлетвленную сеть, сообщающуюся с ядерной ламиной. Возможно, ядерный матрикс принимает участие в формировании функциональных доменов хроматина. В геноме клетки имеются специальные незначащие А-Т-богатые участки прикрепления к ядерному матриксу (англ. S/MAR - Matrix/Scaffold Attachment Regions), служащие, как предполагается, для заякоривания петель хроматина на белках ядерного матрикса. Впрочем, не все исследователи признают существование ядерного матрикса.


Wikimedia Foundation . 2010 .

Смотреть что такое "Ядерный матрикс" в других словарях:

    Матрикс - все актуальные промокоды на скидку Матрикс в категории Парикмахерские принадлежности и косметика для волос

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия

    - (кариоплазма,кариолимфа, нуклео плазма), содержимое клеточного ядра, заполняющее пространство между хроматином, ядрышком и другими структурами. Содержит различные ферменты, нуклеотиды, аминокислоты и другие вещества, необходимые для обеспечения… … Биологический энциклопедический словарь

    ядерный скелет (матрикс) - Опорная структура ядра, составленная периферической пластинкой и пронизывающими ядро тяжами, имеющими окончательно не выясненную биохимическую природу, в специфических зонах с Я.с. контактирует хроматин и гетерогенные рибонуклеопротеиновые… … Справочник технического переводчика

    Матрикс. См. ядерный скелет. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …

    Матрикс - * матрыкс * matrix основное вещество ряда клеточных структур: цитоплазмы (гиалоплазма, или цитоплазматический М.), органелл (напр., М. митохондрий, М. пластид) и ядра (кариолимфа, или ядерный М.). 2. Основное гомогенное и мелкозернистое вещество… …

    Karyoplasm, karyolymph, nucleoplasm кариоплазма, кариолимфа, нуклеоплазма, “ядерный сок”. Hепрокрашиваемое (в отличие от хроматина ) содержимое клеточного ядра, в которое погружен хроматин; после удаления хроматина в К.… … Молекулярная биология и генетика. Толковый словарь.

    Nucleoskeleton, nuclear scaffold (matrix) ядерный скелет (матрикс). Oпорная структура ядра, составленная периферической пластинкой и пронизывающими ядро тяжами, имеющими окончательно не выясненную биохимическую природу, в специфических зонах с… … Молекулярная биология и генетика. Толковый словарь.

    Кариоплазма кариолимфа нуклеоплазма «ядерный сок» - Кариоплазма, кариолимфа, нуклеоплазма, «ядерный сок» * карыяплазма, карыялімфа, нуклеаплазма, «ядзерны сок» * karyoplasm or caryoplasm or «nuclear juice» 1. Содержимое клеточного ядра, заключенное в ядерную оболочку. 2. Непрокрашиваемое (в… … Генетика. Энциклопедический словарь

    Клетки HeLa, ДНК которых окрашена голубым красителем Хёхста 33258. Центральная и правая клетки находятся в интерфазе, по … Википедия

    Клетки ДНК которых окрашена голубым красителем Хойста. Центральная и правая клетки находятся в интерфазе, поэтому окрашено всё ядро. Клетка слева находится в состоянии митоза (анафаза), поэтому её ядро не видно, а ДНК сконденсирована так, что… … Википедия

Мы уже познакомились с тем, что в интерфазном ядре развернутые хромосомы располагаются не хаотично, а строго упорядоченно. Такая организация хромосомы в трехмерном пространстве ядра необходима не только для того, чтобы при митозе происходила сегрегация хромосом, их обособление от соседей, но и кроме того необходима для упорядочения процессов репликации и транскрипции хроматина. Можно предполагать, что для осуществления этих задач должна существовать какая-то каркасная внутриядерная система, которая может служить объединяющей основой для всех ядерных компонентов – хроматина, ядрышка, ядерной оболочки. Такой структурой является белковый ядерный остов или матрикс . Необходимо сразу же оговориться, что ядерный матрикс не представляет собой четкой морфологической структуры: он выявляется как отдельный морфологический гетерогенный компонент при экстракции из ядер практически всех участков хроматина, основной массы РНК и липопротеидов ядерной оболочки. От ядра, которое не теряет при этом своей общей морфологии, оставаясь сферической структурой, остается как бы каркас, остов, который иногда называют еще «ядерным скелетом».

Впервые компоненты ядерного матрикса (остаточные ядерные белки) были выделены и охарактеризованы в начале 60-х годов. Было обнаружено, что при последовательной обработке изолированных ядер печени крыс 2 М раствором NaCI, а затем ДНКазой, происходит полное растворение хроматина, а основными структурными элементами ядра остаются: ядерная оболочка, связанные с ней компоненты – нуклеонемы (ядерные нити), содержащие белок и РНК, и ядрышки. Была высказана гипотеза, что фибриллы хроматина в нативных ядрах прикреплены к этим осевым белковым нитям наподобие «ершика для чистки бутылок» (см. рис. 67).

Значительно позднее (середина 70-х годов) эти работы получили развитие и привели к появлению массы новых сведений о нехроматиновых белках ядерного остова и о его роли в физиологии клеточного ядра. В это же время был предложен термин «ядерный матрикс» для обозначения остаточных структур ядра, которые могут быть получены в результате последовательных экстракций ядер различными растворами. Новым в этих приемах было использование неионных детергентов, таких как Тритон Х-100, растворяющих ядерные липопротеидные мембраны.

Последовательность обработки выделенных ядер, приводящая к получению препаратов ядерного матрикса, обогащенного белком, следующая (см. табл. 6).

Таблица 6 . Экстракция (в %) ядерных компонентов в процессе получения ядерного белкового матрикса

Изолированные ядра, полученные в растворах 0,25 М сахарозы, 0,05 М Трис-HCI буфера и 5 мМ MgCI 2 помещались в раствор низкой ионной силы (LS), где деградировала основная масса ДНК за счет эндонуклеазного расщепления. В 2 М NaCI (HS) в дальнейшем происходила диссоциация хроматина на гистоны и ДНК, шла дальнейшая экстракция фрагментов ДНК и различных белков. Последующая обработка ядер в 1% растворе Тритона Х-100 приводила почти к полной потере фосфолипидов ядерной оболочки и получению ядерного матрикса (NM), содержащего остатки ДНК и РНК, которые дополнительно растворялись при обработке нуклеазами, в результате чего получали конечную фракцию ядерного белкового матрикса (NPM). Он состоит на 98% из негистоновых белков, в него, кроме того, входит 0,1% ДНК, 1,2% РНК, 1,1% фосфолипидов.

Химический состав ядерного матрикса, полученный таким способом сходен у различных объектов (см. табл. 7).

Таблица 7 . Состав ядерного белкового матрикса

По своей морфологической композиции ядерный матрикс состоит,по крайней мере, из трех компонентов: периферический белковый сетчатый (фиброзный) слой – ламина (nuclear lamina, fibrous lamina), внутренняя или интерхроматиновая сеть (остов) и «остаточное» ядрышко (рис. 68).

Ламина представляет собой тонкий фиброзный слой, подстилающий внутреннюю мембрану ядерной оболочки. В ее состав входят так же комплексы ядерных пор, которые как бы вмурованы в фиброзный слой. Часто эту часть ядерного матрикса называют фракцией «поровый комплекс – ламина» (PCL – “pore complex – lamina”). В интактных клетках и ядрах ламина большей частью морфологически не выявляется, т.к. к ней тесно прилегает слой периферического хроматина. Лишь иногда ее удается наблюдать в виде относительного тонкого (10-20 нм) фиброзного слоя, располагающегося между внутренней мембраной ядерной оболочки и периферическим слоем хроматина.

Структурная роль ламины очень велика: она образует сплошной фиброзный белковый слой по периферии ядра, достаточный для того, чтобы поддерживать морфологическую целостность ядра. Так удаление обеих мембран ядерной оболочки с помощью Тритона Х-100 не вызывает распада, растворения ядер. Они сохраняют свою округлую форму и не расплываются даже в случае перевода их в низкую ионную силу, когда происходит набухание хроматина.

Внутриядерный остов или сеть морфологически выявляется только после экстракции хроматина. Он представлен рыхлой фиброзной сетью, располагающейся между участками хроматина, часто в состав этой губчатой сети входят различные гранулы РНП-природы.

Наконец, третий компонент ядерного матрикса – остаточное ядрышко – плотная структура, повторяющая по своей форме ядрышко, также состоит из плотно уложенных фибрилл.

Морфологическая выраженность этих трех компонентов ядерного матрикса, так же как и количество во фракциях, зависит от целого ряда условий обработки ядер. Лучше всего элементы матрикса выявляются после выделения ядер в относительно высоких (5 мМ) концентрациях двухвалентный катионов.

Обнаружено, что для выявления белкового компонента ядерного матрикса большое значение имеет образование дисульфидных связей. Так если ядра предварительно инкубировать с иодацетамидом, препятствующим образованию S-S связей, а затем вести ступенчатую экстракцию, то ядерный матрикс представлен только комплексом PCL. Если же использовать тетратионат натрия, вызывающий замыкание S-S связей, то ядерный матрикс представлен всеми тремя компонентами. В ядрах, предварительно обработанных гипотоническими растворами, выявляются только ламина и остаточные ядрышки.

Все эти наблюдения привели к выводу, что компоненты ядерного матрикса представляют собой не застывшие жесткие структуры, а компоненты, обладающие динамической подвижностью, которые могут меняться не только в зависимости от условий их выделения, но и от функциональных особенностей нативных ядер. Так, например, в зрелых эритроцитах кур весь геном репрессирован и хроматин локализован преимущественно на периферии ядра, в этом случае внутренний матрикс не выявляется, а только ламина с порами. В эритроцитах 5-дневных куриных эмбрионов, ядра которых сохраняют транскрипционную активность, элементы внутреннего матрикса выражены отчетливо.

Как было видно из табл. 7, основной компонент остаточных структур ядра – белок, содержание которого может колебаться от 98 до 88%. Белковый состав ядерного матрикса из разных клеток довольно близок. Характерными для него являются три белка фиброзного слоя, и носящих название ламинов . Кроме этих основных полипептидов в матриксе присутствует большое количество минорных компонентов с молекулярными массами от 11-13 до 200 кД.

Ламины представлены тремя белками (ламины A, B, C). Два из них, ламины A и C, близки друг к другу иммунологически и по пептидному составу. Ламин B от них отличается тем, что он представляет собой липопротеид и поэтому он более прочно связывается с ядерной мембраной. Ламин B остается в связи с мембранами даже во время митоза, тогда как ламины А и С освобождаются при разрушении фиброзного слоя и диффузно распределяются по клетке.

Как оказалось, ламины близки по своему аминокислотному составу промежуточным микрофиламентам (виментиновым и цитокератиновым), входящим в состав цитоскелета. Часто фракция выделенных ядер, а также препараты ядерного матрикса содержат значительные количества промежуточных филаментов, которые остаются связанными с периферией ядра даже после удаления ядерных мембран.

В отличие от промежуточных филаментов ламины при полимеризации не образуют нитчатых структур, а организуются в сети с ортогональным типом укладки молекул. Такие сплошные решетчатые участки, подстилают внутреннюю мембрану ядерной оболочки, могут разбираться при фосфорилировании ламинов, и вновь полимеризоваться при их дефосфорилированиии, что обеспечивает динамичность как этого слоя, так и всей ядерной оболочки.

Молекулярная характеристика белков внутриядерного остова детально еще не разработана. Показано, что в его состав входят ряд белков, принимающих участие в доменной организации ДНК в интерфазном ядре в создании розетковидной, хромомерной формы упаковки хроматина. Предположение о том, что элементы внутреннего матрикса представляют собой сердцевины розеточных структур хромомеров находит подтверждение в том, что полипептидный состав матрикса интерфазных ядер (за исключением белков ламины) и остаточных структур метафазных хромосом (осевые структуры или «скэффолд») практически одинаковы. В обоих случаях эти белки отвечают за поддержание петлевой организации ДНК.

Лекция № .

Количество часов: 2

Клеточное ЯДРО

1. Общая характеристика интерфазного ядра. Функции ядра

2.

3.

4.

1. Общая характеристика интерфазного ядра

Ядро - это важнейшая составная часть клетки, которая имеется практически во всех клетках многоклеточных организмов. Большинство клеток имеет одно ядро, но бывают двуядерные и многоядерные клетки (например, поперечно-полосатые мышечные волокна). Двуядерность и многоядерность обусловлены функциональными особенностями или патологическим состоянием клеток. Форма и размеры ядра очень изменчивы и зависят от вида организма, типа, возраста и функционального состояния клетки. В среднем объем ядра составляет приблизительно 10% от общего объема клетки. Чаще всего ядро имеет округлую или овальную форму размером от 3 до 10 мкм в диаметре. Минимальный размер ядра составляет 1 мкм (у некоторых простейших), максимальный - 1 мм (яйцеклетки некоторых рыб и земноводных). В некоторых случаях наблюдается зависимость формы ядра от формы клетки. Ядро обычно занимает центральное положение, но в дифференцированных клетках может быть смещено к периферийному участку клетки. В ядре сосредоточена практически вся ДНК эукариотической клетки.

Основными функциями ядра являются:

1) Хранение и передача генетической информации;

2) Регуляция синтеза белка, обмена веществ и энергии в клетке.

Таким образом, ядро является не только вместилищем генетического материала, но и местом, где этот материал функционирует и воспроизводится. Поэтому нарушение любой из этих функций приведет к гибели клетки. Все это указывает на ведущее значение ядерных структур в процессах синтеза нуклеиновых кислот и белков.

Одним из первых ученых продемонстрировавших роль ядра в жизнедеятельности клетки был немецкий биолог Хаммерлинг. В качестве экспериментального объекта Хаммерлинг использовал крупные одноклеточные морские водоросли Acetobularia mediterranea и А. c renulata. Эти близкородственные виды хорошо отличаются друг от друга по форме «шляпки». В основании стебелька находится ядро. В одних экспериментах шляпку отделяли от нижней части стебелька. В результате было установлено, что для нормального развития шляпки необходимо ядро. В других экспериментах стебелек с ядром одного вида водоросли соединялся со стебельком без ядра другого вида. У образовавшихся химер всегда развивалась шляпка, типичная для того вида, которому принадлежало ядро.

Общий план строения интерфазного ядра одинаков у всех клеток. Ядро состоит из ядерной оболочки, хроматина, ядрышек, ядерного белкового матрикса и кариоплазмы (нуклеоплазмы). Эти компоненты встречаются практически во всех неделящихся клетках эукариотических одно- и многоклеточных организмов.

2. Ядерная оболочка, строение и функциональное значение

Ядерная оболочка (кариолемма, кариотека) состоит из внешней и внутренней ядерных мембран толщиной по 7 нм. Между ними располагается перинуклеарное пространство шириной от 20 до 40 нм. Основными химическими компонентами ядерной оболочки являются липиды (13-35%) и белки (50-75%). В составе ядерных оболочек обнаруживаются также небольшие количества ДНК (0-8%) и РНК (3-9%). Ядерные оболочки характеризуются относительно низким содержанием холестерина и высоким - фосфолипидов. Ядерная оболочка непосредственно связана с эндоплазматической сетью и содержимым ядра. С обеих сторон к ней прилегают сетеподобные структуры. Сетеподобная структура, выстилающая внутреннюю ядерную мембрану, имеет вид тонкой оболочки и называется ядерной ламиной. Ядерная ламина поддерживает мембрану и контактирует с хромосомами и ядерными РНК. Сетеподобная структура, окружающая наружную ядерную мембрану, гораздо менее компактна. Внешняя ядерная мембрана усеяна рибосомами, участвующими в синтезе белка. В ядерной оболочке имеются многочисленные поры диаметром около 30-100 нм. Количество ядерных пор зависит от типа клетки, стадии клеточного цикла и конкретной гормональной ситуации. Так чем интенсивнее синтетические процессы в клетке, тем больше пор имеется в ядерной оболочке. Ядерные поры довольно лабильные структуры, т. е. в зависимости от внешнего воздействия способны изменять свой радиус и проводимость. Отверстие поры заполнено сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют ядерным поровым комплексом. Сложный комплекс пор имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагаются три ряда гранул, по 8 штук в каждом: один ряд лежит средство построения концептуальных моделей стороны ядра, другой - средство построения концептуальных моделей стороны цитоплазмы, третий расположен в центральной части пор. Размер гранул около 25 нм. От гранул отходят фибриллярные отростки. Такие фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму, поперек поры. В центре отверстия часто можно видеть так называемую центральную гранулу.

Ядерно-цитоплазматический транспорт

Процесс транслокации субстрата через ядерную пору (для случая импорта) состоит из нескольких стадий. На первой стадии транспортирующийся комплекс заякоривается на обращенной в цитоплазму фибрилле. Затем фибрилла сгибается и перемещает комплекс ко входу в канал ядерной поры. Происходит собственно транслокация и освобождение комплекса в кариоплазму. Известен и обратный процесс - перенос веществ из ядра в цитоплазму. Это в первую очередь касается транспорта РНК синтезируемого исключительно в ядре. Также существует другой путь переноса веществ из ядра в цитоплазму. Он связан с образованием выростов ядерной оболочки, которые могут отделяться от ядра в виде вакуолей, а затем содержимое их изливается или выбрасывается в цитоплазму.

Таким образом, обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями: через поры и путем отшнуровывания.

Функции ядерной оболочки:

1. Барьерная. Эта функция заключается в отделении содержимого ядра от цитоплазмы. В результате оказываются пространственно разобщенными процессы синтеза РНК/ДНК от синтеза белка.

2. Транспортная. Ядерная оболочка активно регулирует транспорт макромолекул между ядром и цитоплазмой.

3. Организующая. Одной из основных функций ядерной оболочки является ее участие в создании внутриядерного порядка.

3. Строение и функции хроматина и хромосом

Наследственный материал может находиться в ядре клетки в двух структурно-функциональных состояниях:

1. Хроматин. Это деконденсированное, метаболически активное состояние, предназначенное для обеспечения процессов транскрипции и редупликации в интерфазе.

2. Хромосомы. Это максимально конденсированное, компактное, метаболически неактивное состояние, предназначенное для распределения и транспортировки генетического материала в дочерние клетки.

Хроматин. В ядре клеток выявляются зоны плотного вещества, которые хорошо окрашиваются основными красителями. Эти структуры получили название "хроматин" (от греч. «хромо» цвет, краска). Хроматин интерфазных ядер представляет собой хромосомы, находящиеся в деконденсированном состоянии. Степень деконденсации хромосом может быть различной. Зоны полной деконденсации называются эухроматином. При неполной деконденсации в интерфазном ядре видны участки конденсированного хроматина, называемого гетерохроматином. Степень деконденсации хроматина в интерфазе отражает функциональную нагрузку этой структуры. Чем "диффузнее" распределен хроматин в интерфазном ядре, тем интенсивнее в нем синтетические процессы. Уменьшение синтеза РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина. Максимальная конденсация конденсированного хроматина достигается во время митотического деления клеток. В этот период хромосомы не выполняют никаких синтетических функций.

В химическом отношении хроматин состоит из ДНК (30-45%), гистонов (30-50%), негистонных белков (4-33%) и небольшого количества РНК. ДНК эукариотических хромосом представляет собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. Репликоны - участки ДНК, которые синтезируются как независимые единицы. Репликоны имеют начальную и терминальную точки синтеза ДНК. РНК представляет собой все известные клеточные типы РНК, находящиеся в процессе синтеза или созревания. Гистоны синтезируются на полисомах в цитоплазме, причем этот синтез начинается несколько раньше редупликации ДНК. Синтезированные гистоны мигрируют из цитоплазмы в ядро, где и связываются с участками ДНК.

В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида (ДНП), которые состоят из ДНК, ассоциированной с гистонами. Хроматиновая нить представляет собой двойную спираль ДНК, окружающую гистоновый стержень. Она состоит из повторяющихся единиц – нуклеосом. Количество нуклеосом огромно.

Хромосомы (от. греч. хромо и сома) - это органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов.

Хромосомы представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. У них имеется зона первичной перетяжки, которая делит хромосому на два плеча. Хромосомы с равными называют метацентрическими , с плечами неодинаковой длины - субметацентрическими. Хромосомы с очень коротким, почти незаметным вторым плечом называются акроцентрическими.

В области первичной перетяжки находится центромера, представляющая собой пластинчатую структуру в виде диска. К центромере прикрепляются пучки микротрубочек митотического веретена, идущие в направлении к центриолям. Эти пучки микротрубочек принимают участие в движении хромосом к полюсам клетки при митозе. Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют ядрышковыми организаторами. Здесь локализована ДНК, ответственная за синтез р-РНК. Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами. В отличие от них разорванные концы хромосом могут присоединяться к таким же разорванным концам других хромосом.

Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные - у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.

Число хромосом у различных объектов также значительно колеблется, но характерно для каждого вида животных или растений. У некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева. Наименьшее количество хромосом (2 на диплоидный набор) наблюдается у малярийного плазмодия, лошадиной аскариды. У человека число хромосом составляет 46, у шимпанзе, таракана и перца 48, плодовая мушка дрозофила – 8, домашняя муха – 12, сазана – 104, ели и сосны – 24, голубя - 80.

Кариотип (от греч. Карион - ядро, ядро ореха, операторы - образец, форма) - совокупность признаков хромосомного набора (число, размер, форма хромосом), характерные для того или иного вида.

Особи разного пола (особенно у животных) одного и того же вида могут различаться по числу хромосом (различие чаще всего на одну хромосому). Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом. Следовательно, структура кариотипа может быть таксономическим признаком.

Во второй половине 20 века в практику хромосомного анализа стали внедряться методы дифференциального окрашивания хромосом. Считается, что способность отдельных участков хромосом к окрашиванию связана с их химическими различиями.

4. Ядрышко. Кариоплазма. Ядерный белковый матрикс

Ядрышко (нуклеола) - обязательный компонент клеточного ядра эукариотных организмов. Однако имеются некоторые исключения. Так ядрышки отсутствуют в высокоспециализированных клетках, в частности в некоторых клетках крови. Ядрышко представляет собой плотное тельце округлой формы величиной 1-5 мкм. В отличие от цитоплазматических органоидов ядрышко не имеет мембраны, которая окружала бы его содержимое. Размер ядрышка отражает степень его функциональной активности, которая широко варьирует в различных клетках. Ядрышко является производным хромосомы. В состав ядрышка входят белок, РНК и ДНК. Концентрация РНК в ядрышках всегда выше концентрации РНК в других компонентах клетки. Так концентрация РНК в ядрышке может быть в 2-8 раз выше, чем в ядре, и в 1-3 раза выше, чем в цитоплазме. Благодаря высокому содержанию РНК, ядрышки хорошо окрашиваются основными красителями. ДНК в ядрышке образует большие петли, которые носят название «ядрышковые организаторы». От них зависит образование и количество ядрышек в клетках. Ядрышко неоднородно по своему строению. В нем выявляются два основных компонента: гранулярный и фибриллярный. Диаметр гранул около 15-20 нм, толщина фибрилл – 6-8 нм. Фибриллярный компонент может быть сосредоточен в центральной части ядрышка, а гранулярный - по периферии. Часто гранулярный компонент образует нитчатые структуры - нуклеолонемы толщиной около 0, 2 мкм. Фибриллярный компонент ядрышек представляет собой рибонуклеопротеидные тяжи предшественников рибосом, а гранулы - созревающие субъединицы рибосом. Функция ядрышка заключается в образовании рибосомных РНК (рРНК) и рибосом, на которых происходит синтез полипептидных цепей в цитоплазме. Механизм образования рибосом следующий: на ДНК ядрышкового организатора образуется предшественник рРНК, который в зоне ядрышка одевается белком. В зоне ядрышка происходит сборка субъединиц рибосом. В активно функционирующих ядрышках синтезируется 1500-3000 рибосом в минуту. Рибосомы из ядрышка через поры в ядерной оболочке поступают на мембраны эндоплазматической сети. Количество и образование ядрышек связано с активностью ядрышковых организаторов. Изменения числа ядрышек могут происходить за счет слияния ядрышек или при сдвигах в хромосомном балансе клетки. Обычно в ядрах содержится несколько ядрышек. В ядрах некоторых клеток (ооциты тритонов) содержится большое количество ядрышек. Это явление получило название амплификации. Оно заключается в организации систем управления качеством, что происходит сверхрепликация зоны ядрышкового организатора, многочисленные копии отходят от хромосом и становятся дополнительно работающими ядрышками. Такой процесс необходим для накопления огромного количества рибосом на яйцеклетку. Благодаря этому обеспечивается развитие эмбриона на ранних стадиях даже при отсутствии синтеза новых рибосом. Сверхчисленные ядрышки после созревания яйцевой клетки исчезают.

Судьба ядрышка при делении клеток. По мере затухания синтеза р-РНК в профазе происходит разрыхление ядрышка и выход готовых рибосом в кариоплазму, а затем и в цитоплазму. При конденсации хромосом фибриллярный компонент ядрышка и часть гранул тесно ассоциируют с их поверхностью, образуя основу матрикса митотических хромосом. Этот фибриллярно-гранулярный материал переносится хромосомами в дочерние клетки. В ранней телофазе по мере деконденсации хромосом происходит высвобождение компонентов матрикса. Его фибриллярная часть начинает собираться в мелкие многочисленные ассоциаты - предъядрышки, которые могут объединяться друг с другом. По мере возобновления синтеза РНК предъядрышки превращаются в нормально функционирующие ядрышки.

Кариоплазма (от греч. < карион > орех, ядро ореха), или ядерный сок, в виде бесструктурной полужидкой массы окружает хроматин и ядрышки. Ядерный сок содержит белки и различные РНК.

Ядерный белковый матрикс (ядерный скелет) - каркасная внутриядерная система, которая служит для поддержания общей структуры интерфазного ядра объединения всех ядерных компонентов. Представляет собой нерастворимый материал, остающийся в ядре после биохимических экстракций. Он не имеет четкой морфологической структуры и состоит на 98% из белков.

Общий состав ядерного матрикса

Мы уже познакомились с тем, что в интерфазном ядре развернутые хромосомы располагаются не хаотично, а строго упорядоченно. Такая организация хромосомы в трехмерном пространстве ядра необходима не только для того, чтобы при митозе происходила сегрегация хромосом, их обособление от сосœедей, но и кроме того необходима для упорядочения процессов репликации и транскрипции хроматина. Можно предполагать, что для осуществления этих задач должна существовать какая-то каркасная внутриядерная система, которая может служить объединяющей основой для всœех ядерных компонентов – хроматина, ядрышка, ядерной оболочки. Такой структурой является белковый ядерный остов или матрикс . Необходимо сразу же оговориться, что ядерный матрикс не представляет собой четкой морфологической структуры: он выявляется как отдельный морфологический гетерогенный компонент при экстракции из ядер практически всœех участков хроматина, основной массы РНК и липопротеидов ядерной оболочки. От ядра, ĸᴏᴛᴏᴩᴏᴇ не теряет при этом своей общей морфологии, оставаясь сферической структурой, остается как бы каркас, остов, который иногда называют еще «ядерным скелœетом».

Впервые компоненты ядерного матрикса (остаточные ядерные белки) были выделœены и охарактеризованы в начале 60-х годов. Было обнаружено, что при последовательной обработке изолированных ядер печени крыс 2 М раствором NaCI, а затем ДНКазой, происходит полное растворение хроматина, а основными структурными элементами ядра остаются: ядерная оболочка, связанные с ней компоненты – нуклеонемы (ядерные нити), содержащие белок и РНК, и ядрышки. Была высказана гипотеза, что фибриллы хроматина в нативных ядрах прикреплены к этим осœевым белковым нитям наподобие «ершика для чистки бутылок» (см. рис. 67).

Значительно позднее (середина 70-х годов) эти работы получили развитие и привели к появлению массы новых сведений о нехроматиновых белках ядерного остова и о его роли в физиологии клеточного ядра. В это же время был предложен термин «ядерный матрикс» для обозначения остаточных структур ядра, которые бывают получены в результате последовательных экстракций ядер различными растворами. Новым в этих приемах было использование неионных детергентов, таких как Тритон Х-100, растворяющих ядерные липопротеидные мембраны.

Последовательность обработки выделœенных ядер, приводящая к получению препаратов ядерного матрикса, обогащенного белком, следующая (см. табл. 6).

Таблица 6. Экстракция (в %) ядерных компонентов в процессе получения ядерного белкового матрикса

Изолированные ядра, полученные в растворах 0,25 М сахарозы, 0,05 М Трис-HCI буфера и 5 мМ MgCI 2 помещались в раствор низкой ионной силы (LS), где деградировала основная масса ДНК за счет эндонуклеазного расщепления. В 2 М NaCI (HS) в дальнейшем происходила диссоциация хроматина на гистоны и ДНК, шла дальнейшая экстракция фрагментов ДНК и различных белков. Последующая обработка ядер в 1% растворе Тритона Х-100 приводила почти к полной потере фосфолипидов ядерной оболочки и получению ядерного матрикса (NM), содержащего остатки ДНК и РНК, которые дополнительно растворялись при обработке нуклеазами, в результате чего получали конечную фракцию ядерного белкового матрикса (NPM). Он состоит на 98% из негистоновых белков, в него, кроме того, входит 0,1% ДНК, 1,2% РНК, 1,1% фосфолипидов.

Химический состав ядерного матрикса, полученный таким способом сходен у различных объектов (см. табл. 7).

Таблица 7. Состав ядерного белкового матрикса

По своей морфологической композиции ядерный матрикс состоит,по крайней мере, из трех компонентов: периферический белковый сетчатый (фиброзный) слой – ламина (nuclear lamina, fibrous lamina), внутренняя или интерхроматиновая сеть (остов) и «остаточное» ядрышко (рис. 68).

Ламина представляет собой тонкий фиброзный слой, подстилающий внутреннюю мембрану ядерной оболочки. В ее состав входят так же комплексы ядерных пор, которые как бы вмурованы в фиброзный слой. Часто эту часть ядерного матрикса называют фракцией «поровый комплекс – ламина» (PCL – “pore complex – lamina”). В интактных клетках и ядрах ламина большей частью морфологически не выявляется, т.к. к ней тесно прилегает слой периферического хроматина. Лишь иногда ее удается наблюдать в виде относительного тонкого (10-20 нм) фиброзного слоя, располагающегося между внутренней мембраной ядерной оболочки и периферическим слоем хроматина.

Структурная роль ламины очень велика: она образует сплошной фиброзный белковый слой по периферии ядра, достаточный для того, чтобы поддерживать морфологическую целостность ядра. Так удаление обеих мембран ядерной оболочки с помощью Тритона Х-100 не вызывает распада, растворения ядер. Οʜᴎ сохраняют свою округлую форму и не расплываются даже в случае перевода их в низкую ионную силу, когда происходит набухание хроматина.

Внутриядерный остов или сеть морфологически выявляется только после экстракции хроматина. Он представлен рыхлой фиброзной сетью, располагающейся между участками хроматина, часто в состав этой губчатой сети входят различные гранулы РНП-природы.

Наконец, третий компонент ядерного матрикса – остаточное ядрышко – плотная структура, повторяющая по своей форме ядрышко, также состоит из плотно уложенных фибрилл.

Морфологическая выраженность этих трех компонентов ядерного матрикса, так же как и количество во фракциях, зависит от целого ряда условий обработки ядер. Лучше всœего элементы матрикса выявляются после выделœения ядер в относительно высоких (5 мМ) концентрациях двухвалентный катионов.

Обнаружено, что для выявления белкового компонента ядерного матрикса большое значение имеет образование дисульфидных связей. Так если ядра предварительно инкубировать с иодацетамидом, препятствующим образованию S-S связей, а затем вести ступенчатую экстракцию, то ядерный матрикс представлен только комплексом PCL. В случае если же использовать тетратионат натрия, вызывающий замыкание S-S связей, то ядерный матрикс представлен всœеми тремя компонентами. В ядрах, предварительно обработанных гипотоническими растворами, выявляются только ламина и остаточные ядрышки.

Все эти наблюдения привели к выводу, что компоненты ядерного матрикса представляют собой не застывшие жесткие структуры, а компоненты, обладающие динамической подвижностью, которые могут меняться не только в зависимости от условий их выделœения, но и от функциональных особенностей нативных ядер. Так, к примеру, в зрелых эритроцитах кур весь геном репрессирован и хроматин локализован преимущественно на периферии ядра, в этом случае внутренний матрикс не выявляется, а только ламина с порами. В эритроцитах 5-дневных куриных эмбрионов, ядра которых сохраняют транскрипционную активность, элементы внутреннего матрикса выражены отчетливо.

Как было видно из табл. 7, основной компонент остаточных структур ядра – белок, содержание которого может колебаться от 98 до 88%. Белковый состав ядерного матрикса из разных клеток довольно близок. Характерными для него являются три белка фиброзного слоя, и носящих название ламинов . Кроме этих базовых полипептидов в матриксе присутствует большое количество минорных компонентов с молекулярными массами от 11-13 до 200 кД.

Ламины представлены тремя белками (ламины A, B, C). Два из них, ламины A и C, близки друг к другу иммунологически и по пептидному составу. Ламин B от них отличается тем, что он представляет собой липопротеид и в связи с этим он более прочно связывается с ядерной мембраной. Ламин B остается в связи с мембранами даже во время митоза, тогда как ламины А и С освобождаются при разрушении фиброзного слоя и диффузно распределяются по клетке.

Как оказалось, ламины близки по своему аминокислотному составу промежуточным микрофиламентам (виментиновым и цитокератиновым), входящим в состав цитоскелœета. Часто фракция выделœенных ядер, а также препараты ядерного матрикса содержат значительные количества промежуточных филаментов, которые остаются связанными с периферией ядра даже после удаления ядерных мембран.

В отличие от промежуточных филаментов ламины при полимеризации не образуют нитчатых структур, а организуются в сети с ортогональным типом укладки молекул. Такие сплошные решетчатые участки, подстилают внутреннюю мембрану ядерной оболочки, могут разбираться при фосфорилировании ламинов, и вновь полимеризоваться при их дефосфорилированиии, что обеспечивает динамичность как этого слоя, так и всœей ядерной оболочки.

Молекулярная характеристика белков внутриядерного остова детально еще не разработана. Показано, что в его состав входят ряд белков, принимающих участие в доменной организации ДНК в интерфазном ядре в создании розетковидной, хромомерной формы упаковки хроматина. Предположение о том, что элементы внутреннего матрикса представляют собой сердцевины розеточных структур хромомеров находит подтверждение в том, что полипептидный состав матрикса интерфазных ядер (за исключением белков ламины) и остаточных структур метафазных хромосом (осœевые структуры или «скэффолд») практически одинаковы. В обоих случаях эти белки отвечают за поддержание петлевой организации ДНК.

Ядро клетки - центральный органоид, один из самых важных. Наличие его в клетке является признаком высокой организации организма. Клетка, имеющая оформленное ядро, называется эукариотической. Прокариоты - это организмы, состоящие из клетки, не имеющей оформленного ядра. Если подробно рассмотреть все его составляющие, то можно понять, какую функцию выполняет ядро клетки.

Структура ядра

  1. Ядерная оболочка.
  2. Хроматин.
  3. Ядрышки.
  4. Ядерный матрикс и ядерный сок.

Структура и функции ядра клетки зависят от типа клеток и их предназначения.

Ядерная оболочка

Ядерная оболочка имеет две мембраны - внешнюю и внутреннюю. Они разделены между собой перинуклеарным пространством. Оболочка имеет поры. Ядерные поры необходимы для того, чтобы различные крупные частицы и молекулы могли перемещаться из цитоплазмы в ядро и обратно.

Ядерные поры образуются в результате слияния внутренней и наружной мембраны. Поры представляют собой округлые отверстия, имеющие комплексы, в которые входят:

  1. Тонкая диафрагма, закрывающая отверстие. Она пронизана цилиндрическими каналами.
  2. Белковые гранулы. Они находятся с двух сторон от диафрагмы.
  3. Центральная белковая гранула. Она связана с периферическими гранулами фибриллами.

Количество пор в ядерной оболочке зависит от того, насколько интенсивно в клетке проходят синтетические процессы.

Ядерная оболочка состоит из внешней и внутренней мембран. Внешняя переходит в шероховатый ЭПР (эндоплазматический ретикулум).

Хроматин

Хроматин - важнейшее вещество, входящее в ядро клетки. Функции его - это хранение генетической информации. Он представлен эухроматином и гетерохроматином. Весь хроматин - это совокупность хромосом.

Эухроматин - это части хромосом, которые активно принимают участие в транскрипции. Такие хромосомы находятся в диффузном состоянии.

Неактивные отделы и целые хромосомы представляют собой конденсированные глыбки. Это и есть гетерохроматин. При изменении состояния клетки гетерохроматин может переходить в эухроматин, и наоборот. Чем больше в ядре гетерохроматина, тем ниже скорость синтеза рибонуклеиновой кислоты (РНК) и тем меньше функциональная активность ядра.

Хромосомы

Хромосомы - это особые образования, которые возникают в ядре только во время деления. Хромосома состоит из двух плеч и центромеры. По форме их делят на:

  • Палочкообразные. Такие хромосомы имеют одно большое плечо, а другое маленькое.
  • Равноплечные. Имеют относительно одинаковые плечи.
  • Разноплечные. Плечи хромосомы зрительно отличаются между собой.
  • С вторичными перетяжками. У такой хромосомы имеется нецентромерная перетяжка, которая отделяет спутничный элемент от основной части.

У каждого вида количество хромосом всегда одинаково, но стоит отметить, что от их количества не зависит уровень организации организма. Так, у человека имеется 46 хромосом, у курицы - 78, у ежа - 96, а у березы - 84. Наибольшее число хромосом имеет папоротник Ophioglossum reticulatum. У него 1260 хромосом на каждую клетку. Наименьшее число хромосом имеет самец-муравей вида Myrmecia pilosula. У него только 1 хромосома.

Именно изучив хромосомы, ученые поняли, каковы функции ядра клетки.

В состав хромосом входят гены.

Ген

Гены - это участки молекул дезоксирибонуклеиновой кислоты (ДНК), в которых закодированы определенные составы молекул белка. В результате этого у организма проявляется тот или иной признак. Ген передается по наследству. Так, ядро в клетке выполняет функцию передачи генетического материала следующим поколениям клеток.

Ядрышки

Нуклеола - это самая плотная часть, которая входит в ядро клетки. Функции, которые она выполняет, очень важны для всей клетки. Обычно имеет округлую форму. Количество ядрышек варьируется в разных клетках - их может быть два, три либо вооще не быть. Так, в клетках дробящихся яиц нуклеолы нет.

Структура ядрышка:

  1. Гранулярный компонент. Это гранулы, которые находятся на периферии ядрышка. Их размер варьируется от 15 нм до 20 нм. В некоторых клетках ГК может быть равномерно распределен по всему ядрышку.
  2. Фибриллярный компонент (ФК). Это тонкие фибриллы, размером от 3 нм до 5 нм. Фк представляет собой диффузную часть ядрышка.

Фибриллярные центры (ФЦ) - это участки фибрилл, имеющие низкую плотность, которые, в свою очередь, окружены фибриллами с высокой плотностью. Химический состав и строение ФЦ почти такие же, как и у ядрышковых организаторов митотических хромосом. В их состав входят фибриллы толщиной до 10 нм, в которых есть РНК-полимераза I. Это подтверждается тем, что фибриллы окрашиваются солями серебра.

Структурные типы ядрышек

  1. Нуклеолонемный или ретикулярный тип. Характеризуется большим количеством гранул и плотного фибриллярного материала. Данный тип структуры ядрышка характерен для большинства клеток. Его можно наблюдать как в животных клетках, так в растительных.
  2. Компактный тип. Характеризуется небольшой выраженностью нуклеономы, большим количеством фибриллярных центров. Встречается в растительных и животных клетках, в которых активно происходит процесс синтеза белка и РНК. Этот тип ядрышек характерен для клеток, активно размножающихся (клетки культуры ткани, клетки растительных меристем и др.).
  3. Кольцевидный тип. В световой микроскоп данный тип виден как кольцо со светлым центром - фибриллярный центр. Размер таких ядрышек в среднем 1 мкм. Данный тип характерен только для животных клеток (эндотелиоциты, лимфоциты и др.). В клетках с таким типом ядрышек довольно низкий уровень транскрипции.
  4. Остаточный тип. В клетках этого типа ядрышек не происходит синтез РНК. При определенных условиях данный тип может переходить в ретикулярный или компактный, т. е. активироваться. Такие ядрышки характерны для клеток шиповатого слоя кожного эпителия, нормобласта и др.
  5. Сегрегированный тип. В клетках с этим типом ядрышек не происходит синтез рРНК (рибосомной рибонуклеиновой кислоты). Это происходит, если клетка обработана каким-либо антибиотиком или химическим веществом. Слово «сегрегация» в данном случае обозначает «разделение» или «обособление», так как все компоненты ядрышек разделяются, что приводит к его уменьшению.

Почти 60% сухого веса ядрышек приходится на белки. Их количество очень велико и может достигать нескольких сотен.

Главная функция ядрышек - это синтез рРНК. Зародыши рибосом попадают в кариоплазму, затем через поры ядра просачиваются в цитоплазму и на ЭПС.

Ядерный матрикс и ядерный сок

Ядерный матрикс занимает почти все ядро клетки. Функции его специфичны. Он растворяет и равномерно распределяет все нуклеиновые кислоты в состоянии интерфазы.

Ядерный матрикс, или кариоплазма, - это раствор, в состав которого входят углеводы, соли, белки и другие неорганические и органические вещества. В нем содержатся нуклеиновые кислоты: ДНК, тРНК, рРНК, иРНК.

В состоянии деления клетки ядерная оболочка растворяется, образуются хромосомы, а кариоплазма смешивается с цитоплазмой.

Основные функции ядра в клетке

  1. Информативная функция. Именно в ядре находится вся информация о наследственности организма.
  2. Функция наследования. Благодаря генам, которые расположены в хромосомах, организм может передавать свои признаки из поколения в поколение.
  3. Функция объединения. Все органоиды клетки объединены в одно целое именно в ядре.
  4. Функция регуляции. Все биохимические реакции в клетке, физиологические процессы регулируются и согласуются ядром.

Один из самых важных органоидов - ядро клетки. Функции его важны для нормальной жизнедеятельности всего организма.


Top