История пилотируемой космонавтики. Военно-политические аспекты пилотируемой космонавтики Пилотируемая космонавтика и ее международные аспекты

В последнюю четверть века истории пилотируемой космонавтики всё чаще звучат голоса тех, кто полагает: никакого смысла в этом занятии нет. Всё то, что гордо именуют космонавтикой, - лишь рудимент советско-американской гонки престижа космических масштабов. Не разумнее ли закрыть МКС, чтобы потратить больше средств на освоение Солнечной системы автоматами?

Лозунг "пилотируемый космос не нужен" звучит всё громче, причём со ссылками на мнение разбирающихся в вопросе людей. Например такое : "Гречко стал первым человеком... который... не побоялся изложить крамольную мысль о бесполезности… человека в космосе". Сходные убеждения приписывают и конструктору Владимиру Челомею. Да и специалисты NASA всё чаще говорят, что посылать человека на другие планеты пока нельзя из-за угрозы космической радиации. Без веских оснований такие люди на подобную точку зрения стать не могут: космос для них стал смыслом жизни.

Увы, Кучинотта по какой-то причине не захотел озвучивать СМИ конкретные цифры нормативов NASA, а также дозу, угрожающую космонавтам на пути к другим планетам. Попробуем восполнить этот недостаток. Сегодня для астронавтов на МКС агентство считает нормой 0,5 зиверта в год, что практически равно цифрам Роскосмоса. Проблема в том, что единственные проводившиеся измерения дозы радиации, которую могут получить астронавты на пути к другой планете, никак не выше этого уровня. Как показали замеры на летевшем к Марсу "Кьюриосити", за 180 дней полёта туда по кратчайшему маршруту астронавты получат 0,33 зиверта (столько же при возвращении). На поверхности Марса тот же марсоход зафиксировал всего 0,23 зиверта в год . Таким образом вся экспедиция с годичным пребыванием на поверхности планеты должна получить 0,9 зиверта за два года, то есть 0,45 зиверта за каждый год, что меньше нормы NASA в 0,5 зиверта.

Более того, общее количество радиации, которое стандарты NASA считают допустимыми для мужчин , составляют от 1,5 зиверта (в возрасте до 25 лет), 2,5 - для 35-летних, 3,25 - для 45-летних и 4,0 зиверта для 55 лет. Это означает, что человек может не раз слетать на другую планету и обратно несмотря на космическую радиацию.

Особо отметим: все эти цифры даны для полного отсутствия специальной антирадиационной зашиты. На практике такое вряд ли случится: даже обычный советский танк изнутри покрыт сантиметрами соответствующих материалов. Сомнительно, что американское космическое агентство будет заботиться о своей экспедиции меньше, чем советская армия заботилась о рядовых срочной службы. На деле NASA уже сегодня разрабатывает такую защиту на новой основе - наполненных водородом борных нанотрубках. Кроме того, в российском Национальном исследовательском технологическом университете "МИСиС" уже научились получать композиты на основе алюминия с включениями таких нанотрубок. Из такого композита можно создавать не только оболочку космических кораблей для действительно дальних путешествий, но и скафандры.

После высадки на иных небесных телах появятся и другие возможности снижения радиационной опасности. Так же как и на Земле, на других планетах есть пещеры, каньоны и лавовые трубки, в которых целесообразно разместить людей на ночлег в случае, если им будет угрожать солнечная буря. Проекты подобных экспедиций предусматривают и обкладывание местным грунтом надувных жилых модулей, и иные импровизированные антирадиационные щиты.

Впрочем, и без всякой защиты есть ещё пара способов в несколько раз сократить дозу облучения, получаемого при полёте в дальнем космосе. Так, астрономы из Германии и США в 2015 году предложили отправлять миссии к другим планетам в период высокой солнечной активности . Логика за этим предложением проста: вспышки на Солнце разгоняют протоны от светила в окружающий космос, усиливая солнечный ветер. Из-за этого галактические лучи слабее проникают внутрь гелиосферы - пузыря, образованного солнечным ветром. Соответственно, общий уровень радиационной угрозы внутри неё существенно снижается. По расчётам, общая накопленная космонавтами доза при этом может упасть в четыре раза.

Вторым способом борьбы с угрозой является резкое сокращение времени путешествия. Если пользоваться обычными ракетами, сделать это не получится, однако, используя ядерные буксиры, вполне можно достигнуть ближайших планет за полтора-два месяца. Ну а за относительно безопасный период солнечного максимума можно будет добраться и до куда более удалённых небесных тел.

Итак, при всей серьёзности космической радиации она не налагает никаких существенных ограничений для освоения других небесных тел. Конечно, если мы захотим отправить людей к девятой планете, находящейся в сотни и тысячи раз дальше от Солнца, чем планеты земной группы, проблемы обязательно появятся. Там нет гелиосферы, да и путешествие займёт немало времени. Однако на текущем этапе планов по полётам в настолько дальний космос никто и не строит.

Чем же вызваны периодические заявления тех же работников NASA в СМИ о "неприемлемости" посылки астронавтов на другие планеты (и возникший отсюда миф о "смертельной и непреодолимой" космической радиации)? Следует чётко понимать: грантовое и проектное финансирование науки, типичное для Запада, а теперь и для нас, имеет определённые особенности. Одна из наиболее заметных среди них: "пирожки покупают у тех, кто громче всего рассказывает об их пользе". Космическим агентствам, которые действительно хотят летать в дальний космос, нужно как-то донести до понимания общества, что без денег такой полёт не случится. NASA же получает ничтожное по меркам своей страны финансирование. Весь бюджет агентства на 2016 год равен стоимости шести бомбардировщиков B-2 (впрочем, доходы Роскосмоса и на один такой не потянули бы). Конкурировать с основными бюджетополучателями в виде военных очень тяжело, и, чтобы добиться хоть чего-то, хороши буквально любые средства. Разумеется, в таких условиях лучше не называть конкретных нормативов NASA по допустимой радиации - иначе выбить средства на создание защиты от неё может и не получиться. Как мы видим, агентство не в чем винить, на его месте так поступили бы многие.

Выяснив, в чём планетоходы уступают космонавтам и почему тем вполне под силу полёт на другие планеты, стоит упомянуть и о принципиальных недостатках пилотируемой космонавтики. Главным из них является то, что она рассматривается политиками как типичная гонка престижа - нечто вроде средства национального самоутверждения. В итоге её часто используют именно в этом качестве, в ущерб интересам как самой космонавтики, так и наук, связанных с изучением внеземного пространства.

Один из наиболее известных примеров - спешка СССР и США во время инициированной политиками лунной гонки. В результате американцы, например, так торопились обогнать конкурентов, что не успели отработать нормальные скафандры для лунных прогулок. От этого у астронавтов на Луне не было физической возможности согнуть ногу в колене, отчего они не ходили, а прыгали , лишь слегка сгибая ноги на манер игрушечных зайчиков, работающих от батареек:

Ничего комичного в этом не было: ходить подобным образом на значительное расстояние не слишком удобно, отчего в США были специально созданы лунные автомобили и даже лунные мопеды. Однако к первой высадке на Луне из-за спешки (всё та же гонка престижа) ничего этого подготовить не успели, из-за чего первым людям на Луне пришлось работать на удалении не больше 60 метров от посадочного модуля. По современным американским оценкам, с нормальным скафандром скорость пешего передвижения астронавтов была бы не ниже средней скорости, на которой удалось эксплуатировать луномобили.

Как бы то ни было, справиться с настроем "первые любой ценой" в последующих посадках на Луне всё же удалось. Хуже было то, что весь американский проект с "Сатурнами" строился по принципу "любой ценой, но как можно быстрее". Из-за этого он был так дорог, что, кроме как в рамках гонки престижа, эксплуатировать его было слишком накладно, что и привело к сворачиванию полётов. Однако с окончанием лунного проекта привычка политиков рассматривать космонавтов как средство информационной войны никуда не делась. Их главной задачей де-факто часто становилась демонстрация того, что "а вот здесь мы первые" - со всеми вытекающими отсюда негативными последствиями.

После поражения в лунной гонке руководство СССР встало на путь сокращения космических расходов. Набор лозунгов в стиле "И на Марсе будут яблони цвести" сменился на известную брежневскую фразу: "Исследования с помощью долговременных орбитальных станций - магистральный путь в освоении космоса". Называя вещи своими именами, концепция эта была продиктована стремлением сохранить лидерство на фоне США, в ту пору не имевших крупных успехов с подобными станциями. Раз здесь у нас есть преимущество - его надо использовать, рассудило руководство. Тем более что прибытие на Луну после американцев явно не дало бы советской космонавтике возможность чувствовать себя первой в мире.

Чтобы лучше всего оценить эффективность этой стратегии, обратимся к одному из самых известных обитателей таких станций - космонавту Гречко. Как он констатирует, "постоянно пилотируемая орбитальная станция не оптимальное решение. Там эффективность как у паровоза... У орбитальных станций очень маленький КПД, несколько процентов". Как раз их, по его мнению, и есть смысл заменять автоматическими обсерваториями типа "Хаббла". Ну а человек, по мнению космонавта, нужен лишь для выполнения задач, с которыми автоматы не справляются, - вроде ремонта тех же станций и межпланетных перелётов.

Обратимся к цифрам: создание и десятилетие эксплуатации МКС оценивались в 157 миллиардов долларов, однако первым десятилетием срок её работы (до 2024 года) не закончился, а значит, эта цифра ещё значительно возрастёт. Учитывая, что шесть полётов на Луну обошлись в своё время США менее чем в 170 миллиардов долларов (сегодняшних), становится несложно понять, что именно Гречко имел в виду под эффективностью "как у паровоза". По сути, самой значимой целью МКС сегодня являются не эксперименты, которые могли бы поставить и автоматы, а простое сохранение умения запускать людей в космос, которое после лунной программы больше особо не к чему приложить. Как показывает опыт США, отказавшись раз от той или иной технологической практики (полёты на ракетах, свёрнутые в пользу шаттлов), вернуться к ней довольно тяжело: американские астронавты не летают в космос на своих кораблях уже пять лет и вряд ли смогут сделать это в ближайшие годы.

Гречко, ещё много лет назад отметил , что у российской космонавтики шансов сохранить лидерство не так много, потому что "стратегия наша неправильная... мы планируем в основном с МКС, а денег на МКС и на межпланетные полёты не дают". И в самом деле: трудно одновременно финансировать и станцию стоимостью с лунную программу, и полёты куда-то дальше неё.

Подведём итоги: пилотируемой космонавтике трудно найти приемлемую альтернативу в настоящем детальном исследовании планет и спутников Солнечной системы. Длящийся десятилетия отказ от неё в пользу исследований автоматами и программа орбитальных станций - очередная замена масла маргарином. С той, правда, разницей, что орбитальный "маргарин" пока обходится не дешевле лунного "масла". Однако в ближайшие годы ожидать какого-либо изменения в этой ситуации не приходится. Как отмечают в том же NASA, электоральный цикл в США слишком короток, чтобы политику имело смысл бороться за рейтинги, продвигая полёт к другой планете. Ну а Россия в настоящий момент просто не в том состоянии, чтобы в одиночку предпринять что-то подобное. Каких-то сдвигов в исследовании дальнего космоса стоит ожидать, только если внешний, нетрадиционный игрок расшатает сложившийся баланс сил и заставит ведущие страны мира вновь включиться в космическую гонку.

Дело в том, что НАСА до сих пор совершенно не способно безопасно возвратить экипаж из дальнего космоса, и, следовательно, в силу одного этого обстоятельства миф Аполлона разваливается на части.

Мифология программы Аполлон раскрывается из источников НАСА по следующим направлениям:

  • Попытка разработать тяжелую лунную ракету-носитель в течение пяти лет завершилась признанием наличия серьезных вибрационных проблем в первой ступени ракеты, аналогичных тем, что имели место на Сатурне-5. Впоследствии от ракет серии Арес пришлось отказаться;
  • Неудивительно, что двигатели F-1 первой ступени Сатурна-5 даже не обсуждаются в текущих аналитических документах НАСА;
  • Модернизированная версия двигателя J-2 второй ступени Сатурна-5 была предложена десять лет тому назад для новой тяжелой ракеты, но НАСА теперь утверждает, что это реально сводится к новой разработке, и работа была приостановлена. Непонятно, когда модернизированный двигатель J-2 будет готов для применения на Пусковой Системе;
  • НАСА до сих пор не в состоянии разработать тяжелую ракету с грузоподъемностью 70 тонн, не говоря уже о повторении возможностей Сатурна-5;
  • НАСА квалифицирует взлет с поверхности Луны как подъем из «глубокого гравитационного колодца», и планы по высадке на Луну оказались отложенными настолько, что от них практически отказались. Это не удивительно, поскольку лунный модуль Аполлона был явно неспособен стартовать с посадочной платформы из-за отсутствия каналов для отвода газов;
  • Командный модуль Аполлона (КМ) имел свойство бистабильности при посадке, то есть существовала равновероятная опасность его переворота и сгорания при входе в атмосферу Земли;
  • НАСА до сих пор не имеет надежного теплозащитного экрана для КМ, чтобы безопасно вернуть экипажи из дальнего космоса;
  • Профиль «прямого» входа в атмосферу, заявленный в аполлоновских отчетах, практически неприменим*, и в случае его реализации при приземлении, скорее всего он окажется катастрофическим для посадочного модуля;
    *) Неприменим – при возвращении на Землю со второй космической скоростью - Прим. ред.
  • Если бы спускаемый аппарат каким-то образом все же удачно перенёс вход в атмосферу, то пережившие спуск астронавты оказались бы в критическом состоянии из-за серьезной опасности тяжелых гравитационных перегрузок после длительного периода невесомости и, скорее всего, после приводнения находились бы в тяжелом состоянии и не выглядели бы столь бодрыми;
  • Недостаток ключевых знаний, касающихся воздействия на человека солнечной и космической радиации за пределами НОО, делает реальную защиту от радиации весьма проблематичной.

После того, как программа «Созвездие» (ПС), которая включала в себя высадку на лунную поверхность в течение 15 лет, была отменена в 2010 году, никаких новых планов полетов на Луну в обозримом будущем не предлагалось. “После того, как ПС была остановлена, стало ясно, что существуют глубокие пробелы в техническом протоколе общеизвестных высадок на Луну в прошлом. Словно впервые, должны быть разработаны и заново созданы следующие элементы программы: ракета большой грузоподъемности; ЛМ для операций на Луне; аппаратная часть для безопасного возвращения в атмосферу Земли.” ()

Миф Аполлона находится сейчас в завершающей стадии своего существования и вскоре будет отброшен как серьезное препятствие на пути освоения человеком космического пространства. Однако, “НАСА действует в рамках парадигмы уловка-22: Агентство не может двигаться вперед без признания истинного положения дел в контексте опыта, накопленного в области пилотируемых исследований космического пространства, в первую очередь наследия Аполлонов, каковым бы оно ни было, а с другой стороны, оно не может раскрыть правду об Аполлонах по различным политическим причинам.” ()

Хотя корни мифа Аполлонов в основе своей были политические, в настоящей статье рассматриваются только технические аспекты и будет показано, как продолжающаяся поддержка этого мифа препятствует развитию пилотируемых исследований космического пространства. Лунная база – такой же амбициозный проект сегодня, каким была высадка на Луну около 50 лет назад. Однако НАСА не удалось разработать жизнеспособную программу по возвращению на Луну, и теперь Агентство решило увести идею лунной базы подальше от общественного внимания и вместо этого продвигать Марс в качестве реальной цели.

См. также главу «Изъяны программы Аполлон» в Приложении

В чём заключается препятствие?

Когда дело доходит до принятия решения, приступить ли к реальной работе по нерешенным проблемам пилотируемой космонавтики, НАСА вынуждено выбирать: либо признать лживость программы Аполлон, либо продолжать вывешивать дымовую завесу для сохранения мифологии Аполлонов. И выбором для НАСА, несомненно, оказывается второй вариант. В этой искаженной системе ценностей, когда упорное следование аполлоновской версии имеет первостепенное значение, прогресс техники пилотируемой космонавтики будет систематически из года в год приноситься в жертву. Ключевые технические этапы на пути к осуществлению полетов человека на Луну были вполне определены, но никогда не были завершены.

Критически важным недостающим элементом является методика безопасного возвращения экипажа из дальнего космоса. Для компетентного аналитика очевидно, что нет смысла планировать длительные космические полеты за пределы НОО, пока полностью не отлажена техника надежного и безопасного возвращения экипажа на землю, и для этого, помимо решения вопросов, связанных с радиационной защитой, наверняка потребуется несколько испытаний в реальных условиях входа в земную атмосферу.

Аполлон имел принципиальные недостатки, касающиеся эффективной тепловой защиты, аэродинамики спускаемого аппарата при входе в атмосферу, а также важных медико-биологические аспектов жизнеобеспечения и безопасности экипажей. Последний фактор налагает бескомпромиссные требования к первым двум. Годы, проведенные в самодовольстве за каменной стеной постоянной лжи о возможностях Аполлонов, методически подавляли работу администраторов, ученых и инженеров, которые могли бы гораздо ранее добиться значительного прогресса в этих критически важных областях.

Триумфу Аполлона исполнилось 20 лет к тому дню, когда Джордж Буш подхватил призыв Р. Рейгана в его обращении к нации в 1984 году. Вслед за Дж. Ф. Кеннеди, Рейган говорил: "Сегодня я поручаю НАСА создать постоянно действующую пилотируемую космическую станцию и сделать это в течение десятилетия." Джордж Буш-старший, стоя на ступенях Национального Музея Авиации и Космонавтики, объявил в 1989 г. об Инициативе по освоению космоса (Space Exploration Initiative). В ней были обозначены планы создания не только космической станции, но также и лунной базы, и, в конечном счете, планы отправить астронавтов на Марс. Президент отметил, что эти исследования – предназначение человечества, а предназначение Америки – в них лидировать. Доклад, опубликованный после президентской речи 20 июля, заявлял, что:

"Следующим стратегическим шагом явится создание постоянно действующего лунного форпоста, который начнется с двух-трех запусков с Земли на станцию «Фридом» кораблей с лунным оборудованием, экипажем, транспортными средствами и топливом. На станции «Фридом» экипаж, грузы и топливо перегружаются на транспортный корабль, который доставит их на окололунную орбиту."

Часть этих впечатляющих замыслов позднее была материализована в виде Международной Космической Станции (МКС), основанной на ключевых российских элементах начиная с 1998 г., к которым в 2001 г. был пристыкован американский модуль «Дестини».

Страстный сторонник идеи полетов на Марс, Роберт Зубрин, хорошо осведомленный в делах НАСА на протяжении многих лет, предоставил информацию из первых рук о том, как эта инициатива 1989 года была отвергнута – как только НАСА получило финансирование для программ Спейс Шаттл и МКС. Зубрин описывает, как “Руководство НАСА отказалось отстаивать программу, которую президент Буш назвал национальным приоритетом.” Он упоминает о “многих людях” , которые воспринимали подход со стороны администрации НАСА как “откровенный саботаж” , который стал возможным благодаря “безразличию президента” .

Эта цепочка событий является хорошим примером того, как сначала провозглашают грандиозный замысел, а потом пускают его под откос как со стороны НАСА, так и правительства США. В итоге, с целью поддержания мифа об Аполлонах, на протяжении более тридцати лет практически ни одной разработки не было завершено в области пилотируемой космонавтики за пределами НОО. Подобный сценарий НИОКР-овских «американских горок», снова отбросивший идею лунной базы в никуда, повторился с Программой Созвездие. Однако, по крайней мере, первоначальный проблеск энтузиазма в 2005 - 2009 гг. вызвал целый ряд интересных теоретических работ, признающих проблемы с заявленным аполлоновским прямым входом спускаемого аппарата в атмосферу, а также исключительную важность решения задачи входа в атмосферу по профилю с отскоком.

Далее, в ходе разработки ракеты Арес были вновь подтверждены проблемы создания мощной ракеты - аналога Сатурну-5. Однако, дальнейшего прогресса добиться не удалось, поскольку Программа Созвездие была свернута, а затем восстановлена в 2010 г. (как новая безымянная - Прим. ред.) , будучи упрощена наполовину и сведена к разработке мощного носителя и возвращаемой капсулы, но без лунного модуля и без каких-либо планов по фактической высадке на лунную поверхность.

Очевиден тот факт, что негласный консенсус между администрацией НАСА и правительственными учреждениями – которые достаточно хорошо знают, что высадки человека на Луну не было, – может продолжаться годами. Как признает Счетная Палата США, "Попытки агентства за последние два десятилетия по разработке средств доставки человека за пределы низкой околоземной орбиты в конечном счете не увенчались успехом."

Похоже, специалисты НАСА не верят, что они смогут поднять этот серьезный вопрос в такой форме, которая потребовала бы практического решения. Их бездействие продолжает демонстрировать, что политический истеблишмент пресечет любые поползновения, способные подорвать значение Аполлона как американского трофея в космической гонке.

Оползающие графики

Хорошо известно, что в настоящее время НАСА планирует две предстоящие исследовательские лунные миссии на корабле Орион: Exploration Mission-1 (EM-1) and Exploration Mission-2 (EM-2) выводимые ракетой-носителем Стартовая Система, (Space Launch System, SLS). Во время первого, беспилотного запуска EM-1, планируется выполнить облет Луны, затем испытать перед пилотируемым полетом скоростное вхождение аппарата в атмосферу и функционирование системы теплозащиты. Второй полет, EM-2 с экипажем на борту, должен будет “продемонстрировать базовые возможности корабля Орион” , т. е. надеется повторить заявленный успех Аполлона-8 в далеком 1968 году.

Все же правительство США заявляет, что НАСА “находится в середине пути разработки первой пилотируемой капсулы, способной доставить людей до Луны и далее” ... и тут же признает, что попытки “не увенчались успехом” .

Кажется невероятным то, что доклад Счетной Палаты подводит черту под усилиями НАСА на протяжении двух десятилетий, считая с конца 90-х, обобщив эти усилия как “неудачные” , и в то же время признавая, что разработка все еще находится в середине пути. Насколько долго, по мнению специалистов НАСА, эта разработка может продолжаться?

Какие выводы можно сделать из этого заявления? Во-первых, дальнейший перенос сроков разработки является неизбежным, поскольку в настоящее время признано, что “НАСА не установило конкретных дат запуска EM-1 и EM-2. Агентство планирует установить дату начала EM-2 после того, как миссия EM-1 будет завершена.”

Последнее заявление про дату запуска EM-2 – просто унизительно, если сравнивать с тем, что по обещаниям 2013 года должно было быть осуществлено в 2021 году (см. ), а затем в 2015 г. было перенесено на 2023 год (см. ). Теперь предполагается, что такое существенное оползание графика будет иметь “эффект домино для связки подпрограмм” .

Во-вторых, скорее всего, последует очередной пересмотр стратегических целей со ссылкой на нехватку ресурсов и проблемы с передачей технологий от фирм-изготовителей. Это приведет к свертыванию текущих планов и постановке другой грандиозной задачи на последующие 10 - 20 лет.

"Программа Орион в настоящее время перерабатывает свой тепловой экран по результатам декабрьского 2014 года испытательного полета. НАСА заключило, что не все части монолитной конструкции, использованной в этих испытаниях, будут удовлетворять более жестким требованиям при EM-1 и EM-2, когда капсула будет подвергаться воздействию повышенного диапазона температур с большей продолжительностью. Было решено сменить монолитную структуру на сотовую конструкцию теплозащитного экрана для EM-1.”

Являясь прежде всего финансовым документом, отчет GAO тем не менее углубляется в специфические технические детали, выявляя трудноразрешимую проблему. О возможных решениях по новому теплозащитному экрану Счетная Палата рассуждает: “В этой конструкции будет примерно 300 ячеек, крепящихся к каркасу, зазоры между ячейками заполняются специальным наполнителем аналогично конструкции, использованной в Космических Челноках (Space Shuttle).” Очевидно, что НАСА экспериментирует с критически важными конструктивными решениями на основе идей, которые ранее были реализованы в менее жестких условиях на Космических Челноках, но не обращается к предыдущему опыту с теплозащитными экранами Аполлонов. Доклад Палаты продолжает: “Однако, сотовая конструкция также несет в себе определенный риск, так как не ясно, насколько надежно ячейки будут крепиться к каркасу, а также нет уверенности в эксплуатационных качествах шовного материала.” И потом: “Программа продолжает испытания монолитной конструкции как одного из возможных подходов для минимизации рисков.”

Очевидно, что, фактически не имея предыдущего опыта работы по теплозащитному экрану для дальних космических полетов, НАСА не уверено в результатах своих текущих экспериментов с экраном и принимает ситуативные решения. Да и тестовый полет 2014 года был осуществлен на скоростях ниже тех, которые будут достигать космические аппараты, возвращаемые как с Луны, так и из других более дальних маршрутов.

Затруднения НАСА с технологиями для полетов за пределами НОО, возможно, объяснимы частично тем, что в течение десяти лет три, если не четыре, группы научно-технических разработчиков (в том числе Boeing, SpaceX и тот же Lockheed Martin с их Орионом) участвовали в работе над капсулой для транспортировки экипажей на Международную Космическую Станцию, и, несмотря на все их усилия, их разработки даже для полетов на НОО не достигают уровня проверенной временем технологии аппарата Союз:

“Соединенные Штаты не имеют внутренних возможностей для транспортировки экипажей на Международную Космическую Станцию (МКС) и для возвращения с нее, и вместо этого продолжают полагаться на Российское Федеральное Космическое Агентство (Роскосмос). С 2006 по 2018 гг. сумма выплат НАСА Роскосмосу составит примерно $3.4 миллиарда за доставку 64-х астронавтов НАСА и их партнеров на МКС и обратно на космических кораблях Союз.” При нынешних ценах, достигающих теперь $80 млн. за вояж туда и обратно на Союзе, будет трудно не прийти к заключению, что русских вполне устраивает молчаливо поддерживать миф о полетах Аполлонов.

Самые последние инициативы от НАСА, особенно от SpaceX, поскорее отправить экипажи на облет Луны , и, тем более, взять туристов сразу в полет к Луне – это безответственная игра словами. И хотя все это, вероятно, призвано поддержать интерес к полетам человека в космос, такие обещания совершенно нереалистичны.

Возвращение грузовой капсулы по баллистической траектории с перегрузкой торможения до 34 g , которая длилась чуть более 2-х минут , вовсе не служит доказательством того, что увеличенный термоизоляционный экран будет работать в условиях, сертифицируемых для возвращения человека. . Что касается планов НАСА отправить экипаж сразу к Луне, не проведя предварительных испытаний без человека на борту, они уже оказались либо отложены, как и ожидалось , либо остаются в подвешенном состоянии – чтобы потом тихо их отменить, после того как шум обещаний в средствах массовой информации достигнет нужного эффекта. Действительно, Агентство без лишнего шума уже отложило и сам беспилотный полет до 2019 года.

“НАСА продолжает находить новые критические аспекты для дальнейших НИОКР-овских доработок по Ориону главным образом не из-за ужесточения требований, например, по безопасности, но просто из-за того, что Агентство, наконец, начало получать подлинную информацию о реальных требованиях к полетам за пределами НОО.” (выделено автором, см. )

Логистика и аэродинамика возвращаемой капсулы

Логистика и аэродинамика возвращения капсулы с экипажем является еще одним важнейшим аспектом, который требует детальной проработки. Невероятно, но эти критические элементы программы не упоминаются ни в текущих планах НАСА, ни в соответствующих докладах Счетной Палаты.

Учитывая заявленный успех Аполлонов, отправка по плану EM-1 беспилотного корабля на облет Луны (планировалась в 2018 году, теперь перенесена на 2019-й), на первый взгляд, кажется скромной задачей. В действительности, ЕМ-1 - это тот беспилотный полет, который отсутствовал в ходе подготовки программы Аполлон. По версии НАСА, за предварительными испытаниями на НОО неожиданно последовал полет Аполлона-8 с экипажем, который якобы отправился прямо к Луне, и, после облета Луны с выходом на окололунную орбиту, его якобы удалось благополучно вернуть на Землю. () После испытаний Ориона в декабре 2014 г. его тепловой щит – заявленный как улучшенная версия экрана Аполлонов – был признан недостаточно надежным для полетов и возвращения из дальнего космоса.

Так что же тогда нужно сделать, чтобы добиться успеха?

Еще до попытки долететь до Луны, необходимо провести предварительные испытательные полеты для сертификации возвращаемой капсулы пилотируемого класса, чтобы удостовериться в надежной отработке методики вхождения в атмосферу из глубин космоса со второй космической скоростью. Это может быть целая серия полетов подобных тому, который был выполнен в декабре 2014 года, но с более высокой эллиптической орбитой и со скоростью корабля равной 11,2 км в секунду относительно гравитационного тела Земли. Для предполагаемого профиля входа в атмосферу его параметры могут быть аналогичны параметрам планируемого возвращения с Луны с фактической скоростью входа в атмосферу в области интерфейса примерно 10,8 км в секунду с учетом вращения планеты.

Во время прямого входа в атмосферу, предположительно осуществленного в полетах Аполлонов, спускаемый аппарат в процессе приземления не покидал пределы атмосферы, поэтому длительное время он должен был испытывать постоянные, если не возрастающие, термические и динамические нагрузки, и, как следствие, это налагало существенные дополнительные требования к теплозащитному экрану. Наблюдая непрекращающиеся попытки обелить программу Аполлон, следует отметить, что ее современные адвокаты рассматривают вход в атмосферу по схеме Аполлон как происходивший на самом деле с отскоком (см. также комментарии Криса Крафта в ) и обсуждают критичность угла входа: “Необходимо было дать спускаемому аппарату возможность войти и выйти из атмосферы, чтобы снизить скорость... При слишком остром угле корабль отскочил бы от атмосферы в космос без всякой надежды на спасение.”

Это утверждение оказалось ключевой ошибкой конструкторов Аполлона, которые приняли решение не применять вариант с отскоком и последующим повторным входом в атмосферу. В действительности, после потери энергии во время первой фазы погружения в атмосферу возвращаемая капсула не может избежать гравитации Земли, так что она не сможет улететь далеко в космос, а вместо этого продолжит свое движение вдоль поверхности Земли. Как оказалось, русские не сделали подобной ошибки, а отработали метод повторного входа в атмосферу после отскока в своих успешных беспилотных полетах начиная с 1968 года. (см. )

Теперь НАСА вынуждено принять концепцию возвращения с отскоком и реализовать, например, метод, предлагаемый в Архитектурном Исследовании 2005 года (Рис.1). На Рис.1б, приведенном ниже, предлагаемый теоретический профиль возвращения с отскоком сравнивается с профилями прямого спуска, описанными в докладах программы Аполлон – с момента входа в зону т.н. интерфейса и до момента раскрытия парашютов на высоте 6 - 7 км. Далее, в Архитектурном Исследовании целевой диапазон (протяженность траектории приземления – Прим. ред.) для прямого входа в полетах Аполлонов предполагается равным примерно 2600 км (Рис.1г) и, далее: ”версия руководства 1969 г. по управлению кораблем Аполлон используется для моделирования прямого входа” , вместо того, чтобы использовать реальные профили, указанные в отчетах.

Вполне вероятно, что на определенном этапе НАСА будет вынуждено признать, что даже в случае возвращения согласно этой теоретической версии с отскоком , первоначальный этап входа не является оптимальным из-за выбора угла входа (– 6.0 град), слишком близкого по величине к обычно сообщаемому для спуска Аполлонов (– 6.65 град). Более реалистичные профили входа рассматривались позднее в теоретических работах академических и военных научно-исследовательских институтов, цитируемых в .

Подводя итог, можно утверждать, что нет необходимости для НАСА дожидаться создания тяжелой ракеты для того, чтобы разработать надежную технику возвращения. Агентству следует продолжать беспилотные испытания, аналогичные испытанию декабря 2014 года, с использованием пусковых систем средней мощности. Ничего подобного не наблюдается в текущих планах НАСА.


Рис. 1а. Вариант возвращения по схеме с отскоком от атмосферы, предложенный в 2005 году, с проецированной дальностью до 13,590 км и общим временем около 37 минут с момента входа в интерфейс на высоте 122 км до посадки возле мыса Канаверал. Скорость входа в атмосферу в зоне интерфейса будет 11,07 км/сек.


Рис. 1б. Зависимость геодезической высоты от времени: сравнение профиля возвращения с отскоком, показанного на Рис.1а (эквивалент рис.5-74 в ) с профилями прямого входа, представленными в докладах миссий Аполлон-8 (рис.5-6(b) в Докладе Миссии) и Аполлон-10 (рис.6-7(b) в Докладе Миссии); график Аполлона-10 слегка сдвинут для отображения всех данных, доступных из доклада (реконструкция автора).


Рис. 1в. Возвращение с отскоком в сравнении с прямым входом: профили из Рис.1б на первоначальном этапе входа. Спуск Аполлона-10 был объявлен выполненным менее, чем за 8 минут. Следует обратить внимание на пологий профиль входа по схеме возвращения с отскоком и плавность ухода обратно к линии интерфейса.

Примечание

1. Автор написал серию статей про Лунную Базу в журнале Nexus 21/05, 22/03, и 23/04, которые опубликованы также на сайте Aulis.com/moonbase2014 , и - они цитируются здесь как MB1, MB2, MB3.

Эти статьи имеются также в русском переводе по следующим ссылкам (Прим. ред.) :

MB1 : Лунная база. Есть ли надежда построить, наконец, лунную базу?

ВЕСТНИК АКАДЕМИИ ВОЕННЫХ НАУК

Полковник Е.И.Жук,

Лауреат Государственной премии РФ,

доктор политических наук, кандидат технических наук,

старший научный сотрудник, действительный член АВН

Военно-политические аспекты пилотируемой космонавтики

Космическая деятельность с самого начала стала ареной военно-политического соперничества двух сверхдержав, продолжающегося в тех или иных формах и с переменным успехом до настоящего времени. Это соперничество особо обострилось с началом пилотируемых полетов и освоения дальнего космоса.

Ключевые слова: космическая деятельность, космонавтика, ракета военного назначения, освоение космического пространства, искусственный спутник, пилотируемый полет, лунная кабина, долговременные космические станции, мирный космос, военный космос.

С запуском первого искусственного спутника Земли (ИСЗ), 4 октября 1957 года, началось практическое освоение бескрайних просторов Вселенной. Именно в России были заложены теоретические и философские основы космической деятельности, выполнены важные инженерно-технические разработки, открывшие путь к использованию беспилотных и пилотируемых космических аппаратов. Первый ИСЗ и полет Юрия Гагарина 12 апреля 1961 года сделали нашу страну великой космической державой. Сбылись слова великого российского ученого, основоположника космонавтики К.Э. Циолковского о том, что человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство.

Проникновение в космос стало одним из величайших свершений человеческого разума в многовековой истории земной цивилизации . Открытие космической эры, первые и наиболее значительные достижения в околоземном пространстве, в исследовании Луны и ближайших планет Солнечной системы были осуществлены наиболее передовыми в экономическом и научно-техническом отношении государствами - СССР и США. Однако космическая деятельность с самого начала стала ареной соперничества двух сверхдержав, стремившихся обеспечить себе военное превосходство на земле и в космосе, добиться победы в военно-политическом и идеологическом противоборстве. Выйдя союзниками из Второй мировой войны, они сразу втянулись в изнурительную гонку ракетно-ядерных вооружений. Сброс атомных бомб на японские города Хиросиму и Нагасаки явился не столько последним актом войны с фашизмом, сколько первой большой операцией «холодной войны»1.

Поворот Вашингтона от политики сотрудничества к конфронтации с Советским Союзом был предрешен приходом в Белый дом (после смерти президента Ф. Рузвельта 12 апреля 1945 года) Г. Трумэна. Первым известным документом «холодной войны» многие историки считают «длинную телеграмму», которую 22 февраля 1946 года направил в Вашингтон поверенный в делах США в Москве Дж. Кеннан. Советский Союз представлялся в ней «неумолимой враждебной силой». Но началом «холодной войны» принято считать известное выступление У. Черчилля 5 марта 1946 года в американском городе Фултоне, где бывший английский премьер призывал объединяться и вооружаться против «советской угрозы». Идею конфронтации с СССР горячо приветствовал президент Г. Трумэн, который спустя год изложил в конгрессе основы политики мира по-американски, вошедшей в историю под названием «доктрины Трумэна». Глава Белого дома провозгласил сферой национальных интересов США практически весь земной шар, а целью политики Соединенных Штатов - поддержку свободных народов, сопротивляющихся попыткам подчинения вооруженным меньшинствам или внешнему давлению, и сопротивление «советскому экспансионизму» повсюду в мире. Важнейшей и приоритетной задачей объявлялась борьба с «советским коммунизмом»2.

С началом «холодной войны» начался и первый этап космической гонки . Политические лидеры двух государств, руководители первых космических проектов в СССР и США по-разному оценивали значение освоения космического пространства для своих стран и всего человечества, представляли масштабы, организационные формы и системы приоритетов национальных космических программ. Но при этом бесспорным остается тот факт, что бескомпромиссное соперничество за право стать первой в истории «космической державой» имело ярко выраженную военно-политическую и идеологическую подоплеку. Разворачивалась и набирала темпы жесточайшая борьба за новое лидерство в науке, технике и экономике, которое давало возможность перевести военный потенциал государства на качественно новый уровень, связанный с обладанием оружием массового поражения и средствами его доставки к целям, находящимся в любом регионе планеты, а также распространить свой контроль на космическое пространство.

Космическая тематика естественным образом исторически была тесно связана с интенсивными работами по созданию ракет военного назначения. В 1935 году будущий главный конструктор космических кораблей, а на тот момент инженер-летчик Сергей Павлович Королев писал: «Интенсивное развитие ракетного дела за последнее десятилетие, несомненно, проходит под знаком подготовки к войне»3. Однако он искренне верил, что создание ракетных двигателей откроет перспективу полета человека в космос. В 1945 году он отмечал: «Мысль об использовании ракетных аппаратов для подъема человека на большие высоты и даже для вылета его в космическое пространство известна довольно давно, так как идея самого ракетного двигателя в силу его природы и принципа действия лучше всего применима для такого рода полетов»4. Программе пилотируемых космических полетов академик Королев придавал особое значение, неизменно подчеркивая ее сложность, большую ответственность, которую несут разработчики пилотируемых космических аппаратов. Он всегда говорил, что при всех положительных сторонах использования автоматических аппаратов окончательное освоение космического пространства и планет возможно только с участием человека при обеспечении нормальных условий для созидательной работы в космосе . О планах нашей страны запустить свой первый ИСЗ мировая общественность узнала в 1956 году, когда в Барселоне на ассамблее специального комитета по проведению Международного геофизического года5 вице-президент Академии наук И.П. Бардин сообщил, что СССР намерен запустить искусственный спутник Земли, посредством которого будут проведены измерения атмосферного давления и температуры, осуществляться наблюдения космических лучей, микрометеоритов, геомагнитного поля и солнечной радиации.

Видный специалист по космонавтике К. Эрике в конце 50-х годов писал: «Совершенно очевидно, что, помимо явных политических и военных интересов, в СССР было проявлено много подлинного энтузиазма в деле проникновения в мировое пространство с помощью космических ракет, в соответствии с пророческим предвидением К.Э. Циолковского... В широком смысле история управляемых снарядов представляет собой мост между ранними идеями космического полета и его практическим воплощением, становящимся реальностью во второй половине XX столетия. Соотношение между космическим полетом и управляемым снарядом может быть несколько упрощенно выражено следующей формулой: «если бы управляемый снаряд не был создан как оружие, его было бы необходимо создать как основу космического полета». Однако в последнем случае вопрос о том, кто должен платить по счетам на многие миллиарды долларов, вероятно, остался бы открытым»6.

В 1952 году для президента Г. Трумэна был подготовлен доклад о проблеме искусственного спутника Земли, ставший впоследствии основой при разработке проекта «Авангард». В докладе содержались самые общие сведения о космическом полете и одновременно указывалось на те преимущества, которые дают государству разработка и эксплуатация ИСЗ (научные, военные и психологические). Обращалось также внимание на необходимость лидерства США в этих областях.

Для координации работ в новой области деятельности в США еще в период Первой мировой войны был создан Национальный консультативный совет по аэронавтике (НАКА), который в соответствии с законом об авиации и исследовании космического пространства 1958 года был преобразован в Национальное управление по аэронавтике и исследованию космического пространства (НАСА). В СССР закона, регламентирующего космическую деятельность, не было. Поэтому цели исследования и практического использования космического пространства вытекали в основном из соответствующих документов ЦК КПСС и Советского правительства. Закон «О космической деятельности» появился уже после распада Советского Союза - 20 августа 1993 года.

Запуск в СССР первого в истории человечества ИСЗ, а затем полет Юрия Гагарина были восприняты американским общественным мнением как акты национального унижения. Сразу же в 1957 году в США были созданы три комиссии, которые независимо друг от друга должны были оценить причины отставания и представить рекомендации относительно ответных мер. Председатель подкомитета по боевой готовности сенатор Л. Джонсон (впоследствии - президент) так охарактеризовал ситуацию: «Мы ожидали, что будем первыми в запуске спутника. Но на самом деле мы даже еще не стали вторыми... Победил Советский Союз»7. Позже по поводу мотивов в соревновании с СССР в области космических исследований он отмечал: «Римская империя контролировала мир потому, что сумела построить дороги. Затем, когда началось освоение морских пространств, Британская империя доминировала в мире, так как имела корабли. В век авиации мы были могущественны, поскольку имели в своем распоряжении самолеты. Сейчас коммунисты захватили плацдарм в космосе»8. Его формула «кто владеет космосом - тот владеет всем миром» была воспринята политическим и военным руководством, а также всей американской общественностью как руководство к практическим действиям. Этот девиз стал основным для американских военных стратегов не только в начале 60-х годов, но и сохранил свою актуальность на современном этапе исторического развития.

После поражения на первом этапе освоения космического пространства США сконцентрировали свои главные усилия на поисках путей и средств формирования и эффективной реализации космической программы, способ-Ной в кратчайшие сроки ликвидировать отставание от Советского Союза и обеспечить им неоспоримое лидерство в исследовании и использовании космического пространства. Военное ведомство и связанные с ним исследовательские центры принялись за разработку перспективных проектов превращения космического пространства в новый театр военных действий. Особое внимание при этом отводилось лунной программе. В послании президента Дж. Кеннеди от 25 мая 1961 года говорилось, что США посвящают себя достижению следующей цели: до конца этого десятилетия высадить человека на Луну и благополучно вернуть его на Землю. Его решение было воспринято многими военными стратегами как стимул к разработке проектов по созданию военной базы на Луне. Свой замысел они предлагали осуществить в пять этапов: доставка на Землю образцов лунного грунта (ноябрь 1964); первая высадка на Луне и возвращение экипажа на Землю (август 1967); временная база на лунной поверхности (ноябрь 1967); завершение строительства лунной базы на 21 человека (декабрь 1968) и ввод ее в эксплуатацию (июнь 1969). В силу исторических обстоятельств военные проекты освоения Луны не были реализованы.

Решение президента Кеннеди было воплощено лишь в проекте «Аполлон» по осуществлению пилотируемых космических полетов на Луну. Испытательные полеты кораблей «Аполлон» начались в беспилотном варианте 28 мая 1964 года. Первый пилотируемый полет был осуществлен на корабле «Аполлон-7», выведенном на орбиту ИСЗ 11 октября 1968 года. 16 июля 1969 года к Луне стартовал «Аполлон-11». 20 июля лунная кабина совершила посадку на Луну, и 21 июля Н. Армстронг впервые в истории человечества вступил на лунную поверхность.

Воодушевленное исторической победой в «лунной гонке», руководство НАСА в сентябре 1969 года направило доклад специальному комитету по космосу при президенте США, в котором подводились первые итоги американской космической программы в области «мирного» космоса и содержались предложения по программе работ на ближайшие годы: продолжить По-Леты по программе «Аполлон» (1970-1972); начать строительство обитаемой базы-станции на Луне (1980-1983); к 1977 году создать первую обитаемую станцию на околоземной орбите; в будущем осуществить космические полеты к ближайшим планетам - Марсу и Венере, а затем к Юпитеру и другим планетам Солнечной системы. Предложенная грандиозная космическая программа в целом так и не была выполнена, однако американцам удалось до декабря 1972 года отправить еще шесть лунных экспедиций.

К сожалению, нога советского человека так и не ступила на поверхность Луны. Наша лунная программа, начатая еще при С.П. Королеве, из-за аварий так и не была реализована. Четвертая (и последняя) попытка запуска ракеты Н-1 была предпринята 23 ноября 1972 года, а в феврале 1976 года в соответствии с решением ЦК КПСС и Совета Министров все работы по этому проекту были прекращены.

Выиграв «лунную гонку», американцы переориентировали космическую программу на создание и эксплуатацию долговременных орбитальных станций . Первая и единственная американская орбитальная станция «Скайлэб» была выведена на орбиту 14 мая 1973 года. На ней в течение года последовательно отработали три длительные экспедиции. После возвращения последней в феврале 1974 года работы со станцией были прекращены, а основное внимание было сосредоточено на проекте многоразовой транспортной космической системы «Спейс шаттл».

Проект «Спейс шаттл» был объявлен президентом Р. Никсоном в марте 1970 года. В отличие от предыдущих космических программ работы в данном направлении велись нормальными темпами и не ускорялись по политическим или идеологическим соображениям. Поэтому не случайно первый полет Шаттла состоялся спустя десять лет - только 12 апреля 1981 года. В ходе развития программы проявилась важная тенденция выравнивания, пересечения усилий в создании космической техники гражданского и военного назначения. При этом повысилась активность министерства обороны в поисках средств и методов более широкого использования в своих интересах космической техники, находящейся в распоряжении НАСА и других гражданских ведомств. Если в прошлом министерство обороны пыталось получить возможность создавать пилотируемые системы исключительно военного назначения, то в проекте «Спейс шаттл» ему удалось добиться долевого участия в финансировании и одновременно самого высокого удельного веса своих интересов в перспективных планах эксплуатации кораблей многоразового применения. Практически во всех полетах астронавты выполняли большой объем экспериментов в интересах военного ведомства, а начиная с 15-го полета, выполненного по секретной программе министерства обороны, стали регулярно планироваться космические полеты исключительно в военных целях. По собственному признанию американцев, многоразовая транспортная система «Спейс шаттл» экономически не оправдывает возлагающихся на нее надежд. По стоимости вывода в космос полезных грузов система проигрывает одноразовым ракетам-носителям9.

Решение о создании в Советском Союзе многоразовой космической системы появилось значительно позже: постановление ЦК КПСС и Совета Министров СССР «О создании многоразовой космической системы в составе разгонной ступени, орбитального самолета, межорбитального буксира-корабля, комплекса управления системой, стартово-посадочного и ремонтно-восстановительного комплекса и других наземных средств, обеспечивающих выведение на северо-восточные орбиты высотой 200 километров полезных грузов массой до 30 тонн и возвращение с орбиты грузов массой до 20 тонн» было принято в феврале 1976 года с одновременным закрытием всех работ по лунной программе.

Работы над программой «Энергия» - «Буран» потребовали громадной концентрации сил всей страны, но проект фактически оказался незавершенным. Многоразовый орбитальный корабль «Буран» первый и последний раз взлетел 15 ноября 1988 года. В беспилотном режиме, дважды обогнув земной шар, он приземлился на аэродром при сильнейшем боковом ветре с очень высокой точностью. Советский Союз доказал, что многоразовый ракетно-космический комплекс «Энергия» - «Буран» технически не уступает, а по некоторым параметрам и превосходит американский «Спейс шаттл». Закрыв свою лунную программу и втянувшись в очередную космическую гонку, СССР вложил в невостребованную многоразовую космическую систему «Энергия» - «Буран» огромные средства, которых так не хватало на развитие орбитальных научно-исследовательских комплексов.

Принятие в конце 60-х годов программы по разработке долговременных орбитальных станций типа «Салют», послуживших в дальнейшем научно-технической базой для орбитального научно-исследовательского комплекса «Мир», обусловливалось прежде всего успехами американцев в реализации пилотируемых полетов на Луну. Проект орбитальной станции, работы по которому проводились под руководством В.Н. Челомея, получил наименование «Алмаз». В проекте, разрабатывавшемся по техническому заданию Министерства обороны, предполагалось, что пилотируемая космическая станция «Алмаз» станет более совершенной для ведения космической разведки, чем беспилотные космические аппараты-разведчики. Для этого станция оснащалась бортовым разведывательным комплексом и лучшей на тот период времени системой датчиков, сопряженных с ЭВМ. Ее макеты появились уже в 1968 году. Однако в дальнейшем было принято решение о разработке «гражданских» космических лабораторий - долговременных орбитальных станций (ДОС) на базе уже созданных образцов «военной» станции «Алмаз». Первая ДОС успешно стартовала 19 апреля 1971 года и получила название «Салют». 7 февраля 1991 года последняя станция «Салют-7» вошла в плотные слои атмосферы и прекратила свое существование, а на орбите остался уникальный орбитальный научно-исследовательский пилотируемый космический комплекс «Мир», базовый блок которого был выведен 20 февраля 1986 года. История орбитального комплекса «Мир» закончилась спустя 15 лет, когда 23 марта 2001 года он был затоплен в южной части Тихого океана.

С помощью орбитальных станций «Салют» и «Мир» была осуществлена уникальная программа поэтапного обживания человеком околоземного космического пространства. Начиная со станции «Салют-6», советская космонавтика прочно заняла лидирующие позиции в области длительных космических полетов, а также по реализации международных космических программ . Орбитальный комплекс «Мир» стал настоящим летным полигоном для проверки многих технических решений и технологических процессов, используемых в настоящее время на международной космической станции. Во многом благодаря осуществлению космической программы орбитального комплекса «Мир» роль России в этом проекте сразу же стала во многом ведущей. Пройдя непростой этап противостояния двух сверхдержав в космосе, пилотируемая космонавтика на современном этапе наконец-то вышла на путь взаимовыгодного сотрудничества . В настоящее время идет успешная реализация проекта по международной космической станции. В соответствии с Соглашением между Российской Федерацией и Соединенными Штатами от 26 октября 1998 года предусматривается возможность использования как Россией, так и США собственных элементов международной космической станции в интересах национальной безопасности своих государств.

На рубеже тысячелетий Америка пересмотрела свою космическую политику, и в 1996 году появилась президентская директива ПДД-49 «Национальная космическая политика», согласно которой в 1999 году была разработана директива министра обороны США № 3100.00 «Космическая политика», предусматривающая: учет новых подходов и политических установок в соответствии с президентской директивой; отражение основных изменений в системе обеспечения международной безопасности, новых аспектов стратегии национальной безопасности и военной стратегии, изменений в формировании бюджета национальной обороны, в структуре вооруженных сил, опыта использования космических сил в боевых условиях, расширяющегося использования космических средств в глобальном масштабе, распространения технологий и информации, развития военных и информационных технологий, активизации коммерческой деятельности в космосе, расширения кооперации между гражданскими и военными секторами и международного сотрудничества; выработку структуры всеобъемлющей политики по осуществлению космической или связанной с космосом деятельности.

В современной военной политике США космос рассматривается такой же средой, как суша, море или воздух, в которой будут осуществляться боевые операции в интересах обеспечения национальной безопасности Соединенных Штатов. Приоритетными задачами космической и связанной с космосом деятельности являются обеспечение статуса свободы космоса и защита в нем интересов национальной безопасности США. В принятой космической политике важная роль отводится пилотируемой космонавтике: «Уникальные возможности, связанные с присутствием человека в космосе, могут быть в максимальной степени использованы практически для проведения в космосе исследований, разработок, испытаний и оценки параметров систем, а также более эффективного решения текущих и перспективных задач в интересах обеспечения национальной безопасности. Это охватывает также и возможность выполнения человеком в космосе задач военного характера, являющихся уникальными по сути или предпочтительными по критерию стоимость-эффективность для обеспечения боевых действий войск»10.

Принципы национальной космической политики, изложенные в ПДД-49, в дальнейшем были пересмотрены новой администрацией Белого дома. Именно таков смысл президентской директивы № 15 от 28 июня 2002 года, в соответствии с которой совет национальной безопасности и департамент науки и техники должны были рассмотреть текущую космическую политику и выработать рекомендации по ее коррекции. В настоящее время пилотируемая космонавтика США взяла курс на дальнейшее освоение околоземного пространства и ближайших планет Солнечной системы. Космическая деятельность в России отнесена к категории высших государственных приоритетов. Главным нормативно-правовым актом является Закон РФ «О космической деятельности» от 20 августа 1993 года с изменениями и дополнениями от 29 ноября 1996 года. Он регламентирует все основные стороны космической деятельности в России и увязан с требованиями международного права.

К основополагающим документам по осуществлению космической политики относятся «Основы политики Российской Федерации в области космической деятельности на период до 2010 года», утвержденные Президентом РФ В.В. Путиным 6 февраля 2001 года, и Концепция национальной космической политики Российской Федерации, утвержденная Постановлением Правительства РФ от 1 мая 1996 года. В них подчеркивается, что главными целями национальной космической политики на современном этапе являются: сохранение Россией статуса великой космической державы; эффективное использование и укрепление космического потенциала Российской Федерации в интересах развития науки и техники, повышения экономической и оборонной мощи страны; активное участие в международном сотрудничестве в области космической деятельности, направленном на решение глобальных проблем человечества.

Итак, военно-политический анализ развития пилотируемой космонавтики убедительно доказывает, что она была, есть и будет одним из важнейших факторов мирового развития и обеспечения национальной безопасности Российской Федерации. Ракетно-космическая отрасль, тесно и неразрывно связанная с наукой, доказала свою жизнеспособность даже в условиях глубокого экономического кризиса. Поэтому отечественной пилотируемой космонавтике сегодня, когда взят курс на освоение Луны и Марса, необходимо уделять самое пристальное внимание и делать все необходимое для ее развития.

Примечания:

    Черток Б.Е. Ракеты и люди. Горячие дни холодной войны. М.: Машиностроение. 2002. С. 16.

    Стародубов В.П. Супердержавы XX века. Стратегическое противоборство. М.: ОЛМА-ПРЕСС, 2001. С. 33-53; Черток Б.Е. Ракеты и люди. Горячие дни холодной войны. 2002. С. 9-21.

    Творческое наследие академика Сергея Павловича Королева: Избранные труды и документы. М.: Наука, 1980. С. 70.

    Хозин ПС. Великое противостояние в космосе (СССР - США). Свидетельства очевидца. М: Ве-че, 2001. С. 29.

    Международный геофизический год с участием ученых из 67 стран был организован Международным советом научных союзов ЮНЕСКО и продолжался с 1 июля 1957 года по 31 декабря 1958 года; основные пункты его научной программы по своим масштабам носили глобальный, планетарный характер.

    Эрике К.А. Космический полет: В 2 т. Т. 1 / Пер. с англ.: Ehricke Krafft A. Space Flight. Princeton, New Jer-sey - Toronto - New York - London. 1960. M.: Изд-во физ.-мат. литры, 1963. С. 71.

    U.S. News and World Report. January 31. 1958. P. 56-57.

    Wolfe Т. The Right Stuff. N.Y., 1980. P. 57.

    Черток Б. Е. Ракеты и люди. Лунная гонка. М.: Машиностроение, 1999. С. 506.

История пилотируемой космонавтики началась 12 апреля 1961 г., когда советский летчик-космонавт Юрий Гагарин совершил первый космический полет продолжительностью 108 минут и навсегда вошел в историю развития нашей цивилизации. Это событие аккумулировало в себе титанические усилия и накопленный научно-технический потенциал ракетно-космической отрасли СССР.

В 1971 г. первый экипаж орбитальной станции "Салют" в составе космонавтов Г.Т. Добровольского, В.Н. Волкова и В.И. Пацаева погиб, возвращаясь после успешного выполнения задания. А космос продолжал собирать жертвы. В 1986 г. катастрофа с американским многоразовым космическим кораблем Challenger унесла жизни семи космонавтов.

Одной из вех, не столь трагической, но тем не менее печальной, на этом тернистом пути стала наша пилотируемая лунная программа. Начатая в 1964 г., она изначально отставала от американской, объявленной в 1961 г. и возведенной в ранг национальной. Успех этой программы стал делом каждого американца. О существовании нашей программы широкая советская общественность могла только догадываться. Ключевым элементом как отечественной, так и американской пилотируемых лунных программ являлся сверхтяжелый носитель. Для успешного осуществления перелета к Луне, посадки и возвращения на Землю требовалось вывести на низкую околоземную орбиту более 100 т полезного груза.

Американцы начали разрабатывать сверхтяжелый носитель по программе Saturn в 1958 г., а в 1961 г. уже состоялся запуск двухступенчатого варианта такого носителя. В 1963 г. было принято окончательное решение о варианте полета к Луне и выбрана трехступенчатая ракета-носитель Saturn, позволяющая выводить на низкую околоземную орбиту 139 т полезного груза и 65 т на траекторию полета к Луне. К испытаниям отечественного носителя HI, выбранного для осуществления нашей пилотируемой лунной программы, приступили только в феврале 1969 г. Масса полезного груза, который должен был выводить на низкую околоземную орбиту этот носитель, составила 70 т.

В длившейся более четырех лет лунной гонке первыми оказались американцы. В декабре 1968 г. американские астронавты на космическом корабле Аро11о-8 совершили полет по орбите вокруг Луны. Наша попытка в феврале 1969 г. проделать то же самое, но в беспилотном варианте, закончилась неудачей (падение ракеты-носителя из-за выключения двигателей). После высадки американских астронавтов на Луне в июле 1969 г. советское руководство потеряло интерес к лунной программе, а четыре подряд аварийных пуска ее основного "локомотива" - сверхтяжелой ракеты-носителя HI - окончательно похоронили отечественную пилотируемую лунную программу.

Пилотируемая экспедиция на Марс в XX в. не получила техни-ческой реализации. Однако как в США,так и в СССР рассматривались различные проекты осуществления таких экспедиций начи-ная с 1960-х гг. Так, один из проектов предусматривал использование в качестве двигателя электрореактивной установки. Масса всего марсианского комплекса могла достигать нескольких сотен тонн. Несмотря на невостребованность эти проекты явились шагом вперед в освоении космоса человеком, а созданный при их разработке научно-технический задел безусловно будет использован при подготовке будущих марсианских экспедиций. После полета Ю.А. Гагарина отечественная пилотируемая космонавтика набирала темпы, очень быстро пройдя путь от единичных краткосрочных полетов к постоянному пребыванию экипажей космонавтов на орбите.

Легендарные "Востоки" и "Восходы" быстро были заменены космическими станциями "Салют" первого поколения, позволившими обеспечить жизнедеятельность и работу орбитальных экипажей на значительное время,ограниченное лишь объемом тех запасов, которые были доставлены на космическую станцию. В это же время впервые были созданы предпосылки для перехода от рассмотрения вопроса типа "стоит ли вообще запускать человека в космос?" к проблемам уровня "а сможет ли человек долететь до Марса и далее к звездам и что для этого необходимо сделать?", поставленным в свое время еще К.Э. Циолковским.

Следствием органичного развития научно-технической мысли явилось создание станций "Салют" второго поколения, наиболее существенным отличием которых явилась отработанная система транспортного обслуживания, дающая возможность организации длительных космических полетов.

Очередным шагом в развитии советской космонавтики стало создание орбитальной станции следующего поколения - пилотируемого космического комплекса "Мир", оперативно-техническое руководство по подготовке и запуску которого осуществлял директор Машиностроительного завода им. М.В. Хруничева А.И. Киселев. "Мир" представлял собой сложную блочномодульную конструкцию, которая могла адаптироваться в полете даже к радикально изменяющимся условиям. Так, например, при проектировании комплекса "Мир" и в первые годы его полета и речи не было о стыковке комплекса с орбитальным кораблем системы Space Shuttle (в качестве основного варианта рассматривалась сты-ковка комплекса с "Бураном"), и уже в условиях космического полета комплекса были проведены его доработка и дооснащение, позволившие решить и эту задачу.

Следует отметить, что одним из итогов развития пилотируемой космонавтики XX в. явился обоснованный вывод о невозможности дальнейшего продуктивного ее развития без широкого внедрения принципа международного сотрудничества. Поэтому следующий этап развития пилотируемой космонавтики, приходящийся на XXI в., будет ознаменован органичным соединением усилий различных стран в работе над единым проектом. Программы пилотируемой космонавтики предусматривают широкую поэтапную организационно-техническую интеграцию проводимых Россией работ с национальными космическими программами США, стран Западной Европы, Японии и Канады. Федеральной космической программой предусмотрено поэтапное внедрение России в международные программы пилотируемых полетов с широким использованием опыта создания и эксплуатации отечественной орбитальной пилотируемой станции "Мир". Основными шагами на пути такого внедрения являлись:

  1. Программы полетов иностранных космонавтов в составе экипажей комплексов "Салют" и "Мир".
  2. Программа "Мир" - Shuttle (1994 - 1995 гг.), включавшая проведение совместных работ на российской станции "Мир" и американском корабле Shuttle, а также полеты российских космонавтов на корабле Shuttle и пребывание американских астронавтов на станции "Мир".
  1. Программа "Мир" - НАСА (1995 - 1997 гг.), имевшая направленность на продолжение и расширение научных исследований в интересах России и США на борту станции "Мир" с использованием кораблей "Союз ТМ" и Shuttle для реализации транспортных операций.

Несмотря на низкий уровень государственного финансирования все же удалось выполнить основной объем запланированных ра-бот. Хотя и с некоторым опозданием, но выполнены программы "Мир" - Shuttle и "Мир" - НАСА. Следующий шаг - программа Международная космическая станция (МКС), осуществляемая в настоящее время, - предусматривает создание Международной космической станции на основе результатов реализации национальных программ России и США ("Мир-2" и Freedom) с расширенными научно-техническими возможностями по проведению фундаментальных исследований и прикладных работ в космосе, связанных с обеспечением жизнедеятельности человека, космической технологией и биотехнологией, природопользованием и экологией, а также отработкой элементов перспективной космической техники.

Необходимо отметить, что стремление к лидерству отечественной космонавтики в области пилотируемого космоса, несомненно, было связано с использованием орбитального комплекса "Мир". Комплекс "Мир", первый модуль которого (базовый блок) выведен на орбиту 20 февраля 1986 г., является крупнейшим научно-техническим достижением в области пилотируемых космических полетов и освоения околоземного космического пространства. Всего по программе полета комплекса "Мир" проведено 102 успешных пуска кораблей и модулей различных типов (включая пуски американского корабля Shuttle).

Комплекс "Мир" не имеет аналогов и является абсолютным мировым рекордсменом по следующим позициям:

  • длительности эксплуатации на орбите;
  • суммарному налету космонавтов на борту комплекса;
  • многопрофильности и объемам проведенных на борту научно-технических программ и исследований;
  • числу выполненных программ в рамках международного сотрудничества, а также объему работ, проведенных на коммерческой основе.

Ресурсные характеристики и уровень международного сотрудничества комплекса "Мир" соизмеримы с соответствующими проектными характеристиками МКС. В течение почти 15 лет эксплуатации комплекса "Мир" на нем была сформирована уникальная научная лаборатория, которая вкдючала природоведческий комплекс, состоящий из блока спектрорадиометрических инструментов, астрофизическую лабораторию из шести мощных телескопов и спектрометров, технологические печи, медицинские диагностические комплексы. На базе научного комплекса проведено около 18 000 сеансов (экспериментов) по таким важнейшим направлениям исследований, как технология, биотехнология, геофизика, исследование природных ресурсов Земли и экология, астрофизика, медицина, биология, материаловедение, испытания техники и ряд других.

Реализация программы обеспечивалась многоотраслевой кооперацией работающих в области наукоемких технологий организаций и предприятий России и стран СНГ. В процессе эксплуатации комплекса "Мир" накоплен уникальный опыт, основу которого составляет долгосрочное прогнозирование технического состояния, периодическое продление срока эксплуатации и специальная, постоянно совершенствуемая технология ремонтно-восстановительных работ, включая работы в открытом космическом пространстве.

Ни в коем случае нельзя рассматривать изолированно проекты орбитального комплекса "Мир" и МКС, так как Россия делится накопленным опытом организации, обеспечения и проведения орбитальных полетов с партнерами по МКС. В последнее время в связи с участием России в создании Международной космической станции возник вопрос о целесообразности продолжения эксплуатации комплекса "Мир", ввиду того что ограниченное государственное финансирование не позволяет одновременно выполнять две масштабные программы. Кроме того, значительное превышение предусмотренного ресурса сделало дальнейшую эксплуатацию станции "Мир" небезопасной. Было принято и в марте 2001 г. осуществлено правительственное решение о прекращении существования станции, ее управляемому сходу с орбиты и затоплении в океане.

Принцип международного космического сотрудничества определяет необходимость полномасштабного участия России в программе Международной космической станции. В XXI в. этому направлению практически нет альтернативы, поскольку расходы на пилотируемую космонавтику в значительной степени стали превышать финансовые возможности одной отдельно взятой страны.

С использованием МКС будут решаться фундаментальные научные проблемы, проводиться прикладные исследования и эксперименты в интересах развития фундаментальной науки, социально-экономической сферы и международного сотрудничества. Основными задачами, решаемыми с использованием Международной космической станции, будут:

  • проведение фундаментальных исследований с целью углубления и расширения знаний о Вселенной и окружающем нас мире;
  • проведение прикладных исследований с целью получения на борту КА геофизической информации для практического использования в сельском, лесном и рыбном хозяйствах, геологии, океанографии и экологии;
  • получения опытных партий полупроводниковых материалов, сплавов, градиентных стекол для исследований и применения в электронной промышленности, атомной энергетике, лазерной технике, проекционном телевидении; получения биологически активных веществ и лекарственных препаратов для медицинской и фармацевтической промышленности, молекулярной электроники, животноводства;
  • проведение работ в рамках программ международного сотрудничества том числе на коммерческой основе;
  • проведение работ по натурной отработке элементов и систем перспективных средств ракетно-космической техники.

Ожидается, что создание этой станции позволит:

  • расширить фундаментальные научные знания в области астрофизики, геофизики и экологии, материал сведения, медицины и биологии;
  • получить высококачественные-образцы новых материалов, биологически активных веществ и медицинских препаратов для использования в электронной и радиопромышленности, оптике, медицине и биологии;
  • повысить эффективность ОКР по созданию и отработке новых видов научной аппаратуры для различных космических систем;
  • получить прирост национального продукта страны от использования новых космических технологий в промышленности и от использования информации о природных ресурсах Земли и экологической обстановке в сельском и лесном хозяйстве, геологии;
  • получить валютные поступления от реализации программ по международному сотрудничеству на коммерческой основе;
  • создать научно-технический задел для перспективных программ исследования Луны и Марса в кооперации с зарубежными странами.

В сентябре 1988 г. правительства США, государств - членов ЕКА, Японии и Канады подписали межправительственное соглашение о сотрудничестве в области разработки, эксплуатации и использования Международной космической станции. В конце 1993 г. Правительство России получило от стран, подписавших это соглашение, приглашение к сотрудничеству по МКС и приняло его.

Проект создания МКС разрабатывался с середины 1980-х гг. и ранее носил название Freedom. До 1993 г. на работы по проекту было израсходовано 11,2 млрд. дол. Однако отсутствие в нем отработанных технических средств и технологий (которыми в значительной степени обладает Россия), обеспечивающих длительное пребывание и деятельность экипажа в условиях космического полета, аварийных средств спасения и экономически оправданных средств доставки на МКС топлива и грузов превращали проект в практически не реализуемый.

Участие России в проекте создания и использования МКС делает программу МКС более устойчивой и реализуемой. Ключевыми элементами и технологиями, которые поставляет Россия, позволяющими существенно ускорить сборку МКС, являются: служебный модуль (СМ), обеспечивающий жизнедеятельность от 3 до 6 членов экипажа; грузовые корабли "Прогресс-М" и их модификации, обеспечивающие снабжение станции расходными компонентами, в том числе топливом; пилотируемые корабли типа "Союз ТМ", обеспечивающие доставку и возвращение экипажа, его аварийное спасение в непредвиденных ситуациях. Аналогов этих средств у других партнеров по МКС (в том числе США) на сегодня нет. В целом российский сегмент Международной космической станции включает в свой состав следующие элементы: модуль "Заря", служебный модуль "Звезда", стыковочные отсеки, универсальный стыковочный и стыковочно-складской модули, научно-энергетическую платформу, исследовательские модули, корабли "Союз ТМ" и "Прогресс". Для доставки на орбиту основных модулей российского сегмента МКС используется ракетахноситель "Протон".

США, государства - члены ЕКА, Канада, Япония - партнеры России по МКС - заинтересованы в ее участии в проекте, понимая, что в противном случае проект становится значительно дороже, а создание станции окажется проблематичным. Этот вывод соответствует мнению американских специалистов. 7 октября 1998 г. на заседании НАСА Дэниэл Голдин впервые публично сообщил, что НАСА может запросить у конгресса дополнительные средства на сохранение роли России в программе создания космической станции и одновременно предпринять меры по уменьшению зависимости программы от российских изделий. Голдин также сообщил, что послание такого содержания было передано в Белый дом во время обсуждения бюджетного запроса НАСА на 2000 г.

По оценкам НАСА, дополнительно потребуется 1,2 млрд. дол., чтобы осуществить план по снижению роли России в программе. В ближайшем будущем НАСА будет покупать российские услуги и изделия. В более отдаленном времени космическое агентство США намерено создать свои изделия и услуги - например, модифицировать МТКС Space Shuttle, чтобы не нуждаться в запусках нескольких российских грузовых кораблей "Прогресс". Участие же России в проекте создания МКС является самым дешевым решением на ближайшее будущее.

Включение России в 1998 г. в число партнеров по МКС способствовало в определенной степени укреплению ее позиций на постсоветском экономическом пространстве. Один из основных ее партнеров по космической деятельности в рамках СНГ - Украина выразила желание тоже участвовать в этом проекте. Украина обратилась к России с предложением о сотрудничестве в создании украинского исследовательского модуля и включении его в состав российского сегмента МКС.

Предусмотрено коммерческое использование ресурсов российского сегмента МКС. Цель коммерческой космической деятельнсти в этом направлении - компенсация части расходов на создание российского сегмента МКС, минимизация эксплуатационных расходов, использование научно-технической продукции, полученной при разработке МКС и ее эксплуатации, в других отраслях экономики для обеспечения создания и развития передовой конкурентоспособной продукции.

Коммерческий интерес для бизнеса в XXI в. также могут представлять:

  • научно-техничеёкая продукция, полученная при разработке МКС на основе последних достижений космической науки и техники;
  • всесторонняя и своевременная подготовка членов экипажа МКС (помимо российских) в Центре подготовки космонавтов им. Ю.А. Гагарина;
  • выполнение заявок партнеров по МКС на доставку полезных нагрузок;
  • подготовка наземного оборудования и персонала для обеспечения запланированных экспериментов (работ) на МКС;
  • выполнение коммерческих заказов на разработку и изготовление материальной части в обеспечение проектов, реализуемых на технической базе российского сегмента МКС.

Интеграция России в международную космическую деятельность способствует укреплению ее позиций в мировом сообществе, усилению авторитета, влияния и понимания российских интересов другими государствами. При анализе отношений с ведущими государствами в области космической деятельности необходимо все время учитывать, что совместные научные проекты, реализация российских возможностей на рынке космических услуг и выполнение Россией принятых обязательств по ограничению и контролю за распространением ракетных технологий рассматриваются зарубежными партнерами как единое целое. Нарушение любой составляющей неминуемо ведет к сокращению (или прекращению) совместных работ не только в области космоса, но и в других областях экономического сотрудничества. В этих условиях в целях сохранения и развития космического потенциала России, расширения международного сотрудничества и привлечения значительных объемов зарубежных средств в ракетно-космическую промышленность страны необходимо обеспечить своевременное выполнение международных обязательств в области космоса (в том числе по созданию МКС).

Прогнозируемый срок функционирования МКС - до 2013 г. Для ее создания требуется 100 млрд. дол., доля России в этой сумме - 6,5...6,8 млрд. дол. Вложив свою долю в создание станции, наша страна получает право на треть ее ресурсов, в том числе: 43 % от времени пребывания и численности экипажа, 20 % энергетических ресурсов, 35 % объема гермоотсеков и 44 % рабочих мест.

Создание МКС успешно реализуется: уже находятся на орбите три элемента МКС, и первый из них - функционально-грузовой блок, разработанный ГКНПЦ им. М.В. Хруничева с привлечением кооперации в составе более 240 предприятий. Его название - "Заря" - символизирует начало нового этапа сотрудничества в области международной космонавтики.

Создание модуля, который по праву можно назвать "переходным отсеком в XXI в.", проходило в сложных условиях формирования конфигурации и изменения требований к МКС. Из сформированных изначально 1100 требований к МКС более трети претерпели изменения в процессе проектирования, изготовления и испытаний. В ходе работы специалистами ГКНПЦ им. М.В. Хруничева были решены сложные научно-технические и организационные проблемы, связанные с адаптацией ФГБ к международным стандартам и выполнением функций, обеспечивающих необходимые условия для развертывания и функционирования МКС:

  • поддержанием орбиты и управлением ориентацией МКС на начальных стадиях развертывания;
  • энергоснабжениеж Международной космической станции на начальном этапе развертывания;
  • обеспечением стыковочных работ;
  • выполнением функций хранилища расходуемых материалов;
  • поддержанием функций жизнеобеспечения.

Ожидается, что в XXI в. большое внимание будет уделено развитию технологий и технических средств для осуществления "малых" орбитальных полетов. Примером такой программы является программа "Орел", предусматривающая создание малогабаритного орбитального корабля для небольших космических экипажей (в составе одного-двух человек) для решения задач по спасению космонавтов, техническому обслуживанию орбитальных средств и ряда других.

Из всех небесных тел наиболее реальным в ближайшей перспективе представляется освоение Луны. Это обусловлено ее пространственной близостью, возможностью размещения на ее поверхности лунных баз различного целевого назначения: производственных, ремонтных, добывающих, астрофизических, систем астероидной защиты и др. В связи с этим следует ожидать в XXI в. возобновления и развития пилотируемых полетов на Луну.

Можно также предполагать пилотируемые полеты к планетам Солнечной системы, прежде всего к Марсу, температурные условия которого наиболее близки земным. Экспедиция на Марс возможна в уже первой четверти XXI в.

Следует отметить, что пилотируемые полеты к другим планетам представляются весьма проблематичными в связи с их высокой стоимостью, сложностью реализации и с прогнозируемым к середине XXI столетия резким обострением глобальных земных проблем. Поэтому исследование планет Солнечной системы и дальнего космоса, повидимому, будет продолжаться с помощью автоматических межпланетных космических аппаратов и зондов.

Заправлены в планшеты
Космические карты,
И штурман уточняет
В последний раз маршрут...

Владимир Войнович (1957)

В начале 2016 года о том, нужна ли человечеству пилотируемая космонавтика, дискутируют научный журналист, модератор Клуба научных журналистов Александр Сергеев и астроном, ст. науч. сотр. ГАИШ МГУ Владимир Сурдин.

Александр Сергеев :

Нередко звучит мнение , что пилотируемая космонавтика не нужна , что это «всегда была политическая фаллометрия между сверхдержавами» и все задачи космических исследований могут выполнить роботы. Хотя в определенных аспектах это суждение не лишено оснований, в общем случае оно является ошибочным.

Естественно, политическая конкуренция была основным двигателем пилотируемой космонавтики. Как результат эти технологии были созданы исторически несколько преждевременно, из-за чего оказались связаны с чрезмерными рисками и затратами. Думаю, реально востребованными они станут еще через полвека. Но раз уж технологии созданы, желательно их сохранять и совершенствовать, а не забрасывать, чтобы потом воссоздавать с нуля. В этом смысл неспешной деятельности вокруг МКС.

Единственной ключевой проблемой в освоении человеком космоса остается высокая стоимость вывода грузов на орбиту. Из-за этого слишком дорого создавать вне Земли полноценную технологическую инфраструктуру. А без нее очень высокими оказываются риски, что, в свою очередь, увеличивает затраты. Получается порочный круг. Если тем или иным способом удастся существенно удешевить доставку, развитие космонавтики резко ускорится.

Принципиально это возможно. По формуле Циолковского для разгона 1 кг до первой космической скорости с помощью химических двигателей нужно всего около 20 кг топлива, то есть порядка 10 долл. Реальная стоимость доставки груза на МКС - около 30 тыс. долл. за килограмм.

Накрутка на 3,5 порядка (!) связана с традиционными технологическими решениями и организационными процессами, а также с вынужденно завышенными требованиями к безопасности (из-за невозможности оказания технической помощи в полете). Почти наверняка эту стоимость можно снизить в десятки раз за счет масштабирования космической деятельности, создания технологической инфраструктуры на орбите и реализации оригинальных идей, вроде запусков с высотных платформ или электромагнитных катапульт.

Что же касается необходимости пилотируемой космонавтики, то задачи, которые в обозримом будущем неосуществимы для автоматов, в космосе есть. Несколько лет назад я читал на эту тему американский отчет. Главной из таких задач там называлось геологическое бурение на поверхности других небесных тел. Речь шла не о скромных экспериментах, как на «Луне-24» или на «Кьюриосити», а о полноценном разведывательном бурении на десятки и сотни метров.

Также предлагаю сравнить скорость передвижения по поверхности:

  • Лунный ровер «Аполлона-17» - 36 км за 3 дня - 12 км / сутки.
  • «Луноход-2» - 42 км за 4 месяца - 350 м / сутки.
  • «Оппортьюнити» - 42 км за 11,5 лет - 10 м / сутки.

Как сделать космическую базу рентабельной?

Есть мнение, что даже при снижении стоимости выведения на орбиту на порядок и росте орбитального трафика на два порядка пилотируемая космонавтика не найдет коммерческого оправдания. Я полагаю, что это не совсем так. Уже сейчас есть направления, которые находятся на грани рентабельности, а если стоимость выведения снизится на порядок-полтора, то работающие бизнес-идеи просто непременно появятся.

Сейчас на МКС живет шесть человек. Если принять рост орбитального трафика в сто раз, то космическое население должно вырасти даже больше, поскольку будет значительная экономия ресурсов за счет масштабирования и синергии. Итак, на орбите работает около тысячи человек. Чем они могут там заниматься?

Более или менее понятно, что не астрономическими наблюдениями, поскольку для этого даже на земных обсерваториях присутствие человека обычно не требуется.

Уникальное торговое предложение космической базы включает длительную невесомость, высокий вакуум, впечатляющий вид Земли из космоса, возможность сборки и обслуживания космических аппаратов без сведения их с орбиты. Возможно, я что-то упустил, но эти пункты очевидны.

Прежде всего, там создается отель. Даже сейчас, когда туристический билет на МКС стоит более 20 млн долл., туда стоит очередь желающих. И на жалкий суборбитальный прыжок за 200 тыс. - тоже. Думаю, что многие захотят за пару миллионов провести отпуск в орбитальном отеле на огромной космической станции с населением в сотни человек, перепробовать там кучу аттракционов (от спортивных игр в невесомости до выхода в открытый космос), познакомиться с работой различных коммерческих, технологических и научных команд.

Далее строится киностудия для съемок в невесомости. Понятно, что и сейчас в Голливуде умудряются создать впечатление невесомости в различных космических фильмах. Но для таких эффектов есть много ограничений, а сопутствующая компьютерная поддержка стоит дорого. Когда бюджеты фильмов исчисляются сотнями миллионов, может оказаться вполне оправданным за 20 млн отправить на орбиту съемочную команду с актерами.

Не забываем о рекламном потенциале «города на орбите». Компании будут платить за размещение своих логотипов на станции, поставку на нее своих продуктов, съемку там своих рекламных роликов, отправку победителей промо-лотерей. Наверняка появятся и новые неожиданные идеи вроде недавнего предложения устраивать по заказу искусственные метеорные дожди над городами, сбрасывая с орбиты специальные капсулы.

Ремонтный док в космосе

Следующее естественное направление - ремонтный док для спутников. Сейчас большинство спутников строится в расчете на полную автономию. Это заставляет делать все системы сверхнадежными, а значит, дорогими. Ошибки выведения, как правило, делают спутники бесполезными. Страховки покрывают стоимость аппаратов, но не упущенную выгоду. Наконец, многие спутники за время эксплуатации устаревают морально.

Пример телескопа «Хаббл» показывает, что обслуживание спутника может значительно продлить его активную жизнь. Буксир с ионным двигателем может приводить в док для обслуживания спутники, выведенные на нерасчетные орбиты, вышедшие из строя, нуждающиеся в модернизации или дозаправке. Кстати, работа многих комических обсерваторий ограничена запасами жидкого гелия на борту. В доке их можно было бы пополнять.

Развитием идеи ремонтного дока будет строительная верфь для крупных спутников и космических кораблей. Сейчас сложность исследовательских спутников и межпланетных станций ограничивается грузоподъемностью и габаритами ракет-носителей. А также тем, что космический аппарат должен безупречно работать сразу после стрессовых условий ракетного старта.

При снижении стоимости выведения и наличии орбитальной сборочной верфи многие ограничения на конструкцию крупных космических аппаратов были бы сняты. Также перестали бы быть столь проблематичными вопросы пилотируемых полетов к другим планетам. В частности, удалось бы снять самую трудную проблему радиационной безопасности экипажа, поскольку масса радиационной защиты больше не была бы сдерживающим фактором.

Исследовательская база в космосе

Следующий шаг - создание космической базы для систематического сбора, доставки и изучения образцов с различных тел Солнечной системы. Нет необходимости при полете за каждым таким образцом сначала выбираться из гравитационно-атмосферного колодца Земли, а потом возвращаться в него. Зонды с ионными двигателями могут стартовать прямо с космической станции и возвращаться на нее. На ней же может проводиться весь цикл исследований, за исключением самых экзотических.

Что касается исследований, то, полагаю, основной упор должен быть сделан на медицину и биологию в условиях нулевой или пониженной гравитации. Также не исключено появление новых материалов, которые оправданно производить в условиях невесомости.

Космический город

И наконец, не будем забывать, что человеческие поселения существуют не только для того, чтобы что-то куда-то поставлять. В них еще просто живут люди, которые занимаются самыми разными делами. Вполне естественно, что по мере роста космической базы часть людей станет просто ее жителями. Вероятно, поначалу жить там будет дорого и это смогут позволить себе лишь очень состоятельные люди. Но ведь их кто-то должен будет обслуживать. И цены этого обслуживания будут учитывать «орбитальную наценку». Так что все эти люди сформируют свой рынок.

Наконец, пойдут исследования по оптимизации жизни на самой орбитальной станции. Скажем, может оказаться, что снабжать станцию кислородом выгоднее не с Земли, а с Луны - в составе реголита. И из него же можно добывать алюминий для собственных конструкционных нужд.

Короче, если численность населения станет достаточно большой, на станции не сразу, но постепенно запустится своя экономика, и проект начнет сам искать себе заработок - туризм, реклама, эксклюзивные апартаменты, обслуживание космической техники, эксперименты, съемки и развлечения в невесомости и в открытом космическом пространстве. В общем, нормальная человеческая жизнь. Только для ее запуска нужно, чтобы стоимость выведения на орбиту снизилась на порядок, а лучше на два. А вот что нужно для этого, пока еще до конца не ясно.

Необходимо менять стратегию

Владимир Сурдин :

Рождение пилотируемой космонавтики в 1960-е было естественным этапом технического прогресса. В нем были заинтересованы все - инженеры, врачи, идеологи. Появление человека на околоземной орбите и далее на Луне сильно изменило мировоззрение просвещенной части землян, стимулировало прогресс науки.

Но в последние десятилетия в пилотируемой космонавтике застой. Ее развитие практически остановилось в середине 1980-х. Стало ясно, что на околоземной орбите человеку опасно оставаться более года, а вдали от Земли - более полугода. Что все оборонные и хозяйственные задачи (мониторинг Земли, связь, навигация и проч.) эффективнее решаются беспилотными аппаратами. Человек в космосе остается элементом государственного престижа, но с годами эффективность и этой его роли снижается.

Сейчас космонавты присутствуют только на МКС и в основном занимаются поддержанием работоспособности станции. Надежды на разработку новых технологий в невесомости (идеальные кристаллы, чистые лекарства), очевидно, не оправдываются. Научные эксперименты на МКС проводятся. Но если не принимать во внимание меркантильные соображения (т. е. финансирование), то ученые не горят желанием размещать свои приборы на МКС, предпочитая непилотируемые аппараты. Отправляя научную установку на МКС, ее всё равно приходится делать максимально автоматизированной и снабжать дополнительными устройствами, нейтрализующими вредное влияние (вибрацию и т. п.) космонавтов и систем их жизнеобеспечения.

Насколько я знаю, пилотируемая космонавтика съедает более трети бюджета гражданских космических агентств, не принося сколько-нибудь значительных научных и технических результатов, в отличие от беспилотных орбитальных аппаратов и межпланетных зондов.

Тем не менее по закону Паркинсона штат любого ведомства со временем только возрастает. Чиновники от пилотируемой космонавтики декларируют для нее новые амбициозные цели (полеты к астероидам, к Марсу), не делая в этом направлении реальных шагов. Даже моделируя на Земле длительные полеты (например, «Марс–500»), они не создают условий, по возможности близких к космическим, - я имею в виду радиацию.

Разумеется, было бы недальновидно на основании сказанного запретить пилотируемые полеты и в результате потерять наработанные технологии. Но менять стратегию необходимо. Технологии пребывания человека в космосе уже используются частными фирмами, развивающими космический туризм, поэтому они не пропадут. А государственные деньги желательно тратить на решение фундаментальных задач.

Предыдущее поколение людей вошло в историю цивилизации первыми шагами в космос. А чем ответит нынешнее поколение? Если переориентировать приоритеты большой космонавтики на создание новых межпланетных зондов и космических телескопов, то наше поколение могло бы стать первым обнаружившим жизнь вне Земли. По-моему, это достойная задача, решив которую мы откроем новые перспективы для человечества.

Александр Сергеев :

Я полностью согласен, что при неизменности технологий выведения на орбиту обозначенная Владимиром Георгиевичем смена стратегии оправданна и даже необходима. Однако мне была интересна ситуация, когда стоимость выведения удастся радикально снизить. В этом случае можно обеспечить в космосе защиту от радиации (это лишь вопрос массы экранов), избавить экипажи от постоянного воздействия невесомости (за счет закрутки больших станций) и значительно снизить психологические издержки (за счет увеличения численности экипажей и уровня безопасности полетов). Таким образом, радикальной космической экспансии препятствует лишь высокая стоимость вывода на орбиту. Технически осуществимые альтернативы ракетным технологиям уже придуманы. Тому, кто реализует их на практике, будет принадлежать космос. А до тех пор, да, только роботы и космонавты престижа.


Top