В чем смысл числа пи. Вычисление с нужной точностью числа пи

14 марта во всем мире отмечают весьма необычный праздник – день числа Пи. Еще со школьной скамьи оно всем известно. Учащимся сразу объясняют, что число Пи - это математическая константа, отношение длины окружности к ее диаметру, которая имеет бесконечное значение. Оказывается, что с этим числом связано немало любопытных фактов

1. История числа насчитывает не одно тысячелетие, почти столько, сколько существует наука математика. Конечно, точное значение числа рассчитали не сразу. Поначалу отношение длины окружности к диаметру считали равным 3. Но с течением времени, когда начала развиваться архитектура, потребовалось более точное измерение. Кстати, число существовало, а вот буквенное обозначение оно получило только в начале XVIII века (1706 год) и происходит от начальных букв двух греческих слов, означающих «окружность» и «периметр». Буквой "π" число наделил математик Джонс, а прочно вошла в математику она уже в 1737 году.

2. В разные эпохи и у разных народов число Пи имело разное значение. Например, в Древнем Египте оно равнялось 3,1604, у индусов оно приобрело значение 3,162, китайцы пользовались числом, равным 3,1459. С течением времени π рассчитывали все точнее, а когда появилась вычислительная техника, то есть компьютер, оно стало насчитывать более 4 миллиардов знаков.

3. Есть легенда, точнее так считают специалисты, что число Пи использовали при строительстве Вавилонской башни. Однако не гнев божий стал причиной ее обрушения, а неправильные расчеты при строительстве. Мол, древние мастера ошиблись. Подобная версия существует касательно храма Соломона.

4. Примечательно, что значение числа Пи пытались вводить даже на уровне государства, то есть посредством закона. В 1897 году в штате Индиана подготовили билль. Согласно документуПи равнялось 3,2. Однако ученые вовремя вмешались и предотвратили таким образом ошибку. В частности, против билля выступил профессор Пердью, присутствовавший на законодательном собрании.

5. Интересно, что свое имя имеют несколько чисел в бесконечной последовательности Пи. Так, шесть девяток числа Пи носят имя американского физика. Как-то Ричард Фейнман читал лекцию и ошарашил публику замечанием. Он сказал, что хотел бы наизусть выучить цифры числа Пи до шести девяток только для того, чтобы под конец рассказа произнести шесть раз «девять», намекая на то, что его значение рационально. Тогда как на самом деле оно иррационально.

6. Математики всего мира не прекращают вести исследования, связанные с числом Пи. Оно буквально окутано некой тайной. Некоторые теоретики даже полагают, что в нем заключена вселенская истина. Чтобы обмениваться знаниями и новой информацией о Пи, организовали Пи-клуб. Вступить в него непросто, нужно иметь незаурядную память. Так, желающих стать членом клуба экзаменуют: человек должен по памяти рассказать как можно больше знаков числа Пи.

7. Придумали даже различные техники для запоминания числа Пи после запятой. Например, придумывают целые тексты. В них слова имеют то же количество букв, что и соответствующая цифра после запятой. Чтобы еще упростить запоминание такого длинного числа, сочиняют стихи по тому же принципу. Члены Пи-клуба частенько развлекаются таким образом, а заодно тренируют память и сообразительность. Например, такое хобби было у Майка Кейта, который восемнадцать лет назад придумал рассказ, каждое слово в котором равнялось почти четырем тысячам (3834) первых знаков числа Пи.

8. Есть даже люди, поставившие рекорды по запоминанию знаков Пи. Так, в Японии Акира Харагучи наизусть выучил больше восьмидесяти трех тысяч знаков. А вот отечественный рекорд не такой выдающийся. Житель Челябинска сумел наизусть произнести только две с половиной тысячи чисел после запятой числа Пи.


"Пи" в перспективе

9. День числа Пи отмечают больше четверти века, с 1988 года. Однажды физик из научно-популярного музея в Сан-Франциско Ларри Шоу заметил, что 14 марта по написанию совпадает с числом Пи. В дате месяц и число образуют 3.14.

10. День числа Пи отмечают не то чтобы оригинально, но весело. Конечно, не пропускают его ученые, занимающие точными науками. Для них это - способ не отрываться от любимого дела, а заодно расслабиться. В этот день люди собираются и готовят разные вкусности с изображением Пи. Особенно есть где разгуляться кондитерам. Они могут делать торты с надписями в виде числа «пи» и печенье похожей формы. Отведав лакомства, математики устраивают разные викторины.

11. Есть любопытное совпадение. 14 марта родился великий ученый Альберт Эйнштейн , создавший, как известно, теорию относительности. Как бы то ни было, физики тоже могут присоединиться к празднованию Дня числа Пи.

13 января, 2017

π= 3,
1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989..

Не нашли? Тогда посмотрите .

Вообще это может быть не только номер телефона, а любая информация, закодированная с помощью цифр. К примеру, если представить все произведения Александра Сергеевича Пушкина в цифровом виде, то они хранились в числе Пи еще до того, как он их написал, даже до того, как он родился. В принципе, они хранятся там до сих пор. Кстати, ругательства математиков в π тоже присутствуют, да и не только математиков. Словом, в числе Пи есть всё, даже мысли, которые посетят вашу светлую голову завтра, послезавтра, через год, а может, через два. В это очень трудно поверить, но даже если мы представим, что поверили, еще труднее будет получить оттуда информацию и расшифровать её. Так что вместо того, чтобы копаться в этих цифрах, может проще подойти к понравившейся девушке и спросить у неё номер?.. Но для тех, кто не ищет легких путей, ну или просто интересующихся, чему же равно число Пи, предлагаю несколько способов его вычисления. Считайте на здоровье.

Чему равно число Пи? Методы его вычисления:

1. Экспериментальный метод. Если число Пи это отношение длины окружности к её диаметру, то первый, пожалуй, самый очевидный способ нахождения нашей загадочной константы будет вручную произвести все измерения и вычислить число Пи по формуле π=l/d. Где l - длина окружности, а d — её диаметр. Все очень просто, необходимо лишь вооружится ниткой для определения длины окружности, линейкой для нахождения диаметра, и, собственно, длины самой нитки, ну и калькулятором, если у вас проблемы с делением в столбик. В роли измеряемого образца может выступить кастрюля или банка из под огурцов, неважно, главное? чтоб в основании была окружность.

Рассмотренный способ вычисления самый простой, но, к сожалению, имеет два существенных недостатка, отражающихся на точности полученного числа Пи. Во-первых, погрешность измерительных приборов (в нашем случае это линейка с ниткой), а во-вторых, нет никакой гарантии, что измеряемая нами окружность будет иметь правильную форму. Поэтому не удивительно, что математика подарила нам множество других методов вычисления π, где нет нужды производить точные измерения.

2. Ряд Лейбница. Существует несколько бесконечных рядов, позволяющих точно вычислять число Пи до большого количества знаков после запятой. Одним из самых простых рядов является ряд Лейбница. π = (4/1) — (4/3) + (4/5) — (4/7) + (4/9) — (4/11) + (4/13) — (4/15) …
Все просто: берем дроби с 4 в числителе (это то что сверху) и одним числом из последовательности нечетных чисел в знаменателе (это то что снизу), последовательно складываем и вычитаем их друг с другом и получаем число Пи. Чем больше итераций или повторений наших нехитрых действий, тем точнее результат. Просто, но не эффективно, к слову, необходимо 500000 итераций чтоб получить точное значение числа Пи с десятью знаками после запятой. То есть, нам придется несчастную четверку разделить аж 500000 раз, а помимо этого полученные результаты мы должны будем 500000 раз вычитать и складывать. Хотите попробовать?

3. Ряд Нилаканта. Нет времени возится с рядом Лейбница? Есть альтернатива. Ряд Нилаканта, хотя он немного сложнее, но позволяет быстрее получить нам искомый результат. π = 3 + 4/(2*3*4) — 4/(4*5*6) + 4/(6*7*8) — 4/(8*9*10) + 4/(10*11*12) — (4/(12*13*14) … Думаю, если внимательно посмотреть на приведенный начальный фрагмент ряда, все становится ясным, и комментарии излишни. По этому идем дальше.

4. Метод «Монте-Карло» Довольно интересным методом вычисления числа Пи является метод Монте Карло. Столь экстравагантное название ему досталось в честь одноименного города в королевстве Монако. И причина тому случайность. Нет, его не назвали случайно, просто в основе метода лежат случайные числа, а что может быть случайней чисел, выпадающих на рулетках казино Монте Карло? Вычисление числа Пи не единственное применение этого метода, так в пятидесятых годах его использовали при расчетах водородной бомбы. Но не будем отвлекаться.

Возьмем квадрат со стороной, равной 2r , и впишем в него круг радиусом r . Теперь если наугад ставить точки в квадрате, То вероятность P того, что точка угодит в круг, есть отношение площадей круга и квадрата. P=S кр /S кв =πr 2 /(2r) 2 =π/4 .

Теперь отсюда выразим число Пи π=4P . Остается только получить экспериментальные данные и найти вероятность Р как отношение попаданий в круг N кр к попаданиям в квадрат N кв . В общем виде расчетная формула будет выглядеть следующим образом: π=4N кр / N кв.

Хочется отметить, что для того, чтобы реализовать этот метод, в казино идти необязательно, достаточно воспользоваться любым более или менее приличным языком программирования. Ну а точность полученных результатов будет зависеть от количества поставленных точек, соответственно, чем больше, тем точнее. Желаю удачи 😉

Число Тау ( Вместо заключения).

Люди, далекие от математики, скорее всего не знают, но так сложилось, что число Пи имеет брата, который больше его в два раза. Это число Тау(τ) , и, если Пи — это отношение длины окружности к диаметру, то Тау — это отношение этой длины к радиусу. И на сегодняшний день есть предложения некоторых математиков отказаться от числа Пи и заменить его на Тау, так как это во многом более удобно. Но пока это только предложения, и как говорил Лев Давидович Ландау: «Новая теория начинает господствовать тогда, когда вымрут сторонники старой».

14 марта объявлен днем числа «Пи», так как в этой дате присутствуют три первые цифры этой константы.

Уже много веков и даже, как ни странно, тысячелетий люди понимают важность и ценность для науки математической постоянной, равной отношению длины окружности к ее же диаметру. число Пи, до сих пор неизвестно, но к нему имели отношение самые лучшие математики на протяжении всей нашей истории. Большинство из них хотели выразить его рациональным числом.

1. Исследователи и истинные поклонники числа Пи организовали клуб, для вступления в который требуется знать наизусть достаточно большое количество его знаков.

2. С 1988 года празднуется «День числа Пи», который приходится на 14 марта. Готовят салаты, торты, печенья, пирожные с его изображением.

3. Число Пи уже переложили на музыку, при этом оно весьма неплохо звучит. Ему даже воздвигли памятник в американском Сиэтле перед зданием городского Музея искусств.

В то далекое время число Пи старались вычислить при помощи геометрии. То, что это число постоянно для самых разных окружностей, знали еще геометры в Древнем Египте, Вавилоне, Индии и Древней Греции, утверждавшие в своих работах, что оно всего лишь немного больше трех.

В одной из священных книг джайнизма (древняя индийская религия, которая возникла в VI в. до н. э.) упоминается, что тогда число Пи считалось равным корню квадратному из десяти, что в итоге дает 3,162... .

Древнегреческие математики проводили измерение окружности методом построения отрезка, а вот для того, чтобы измерить круг, им приходилось строить равновеликий квадрат, то есть фигуру, равную ему по площади.

Когда еще не знали десятичных дробей, великий Архимед нашел значение числа Пи с точностью 99,9%. Он открыл способ, который стал основой многих последующих вычислений, вписывал в окружность и описывал вокруг нее правильные многоугольники. В результате Архимед рассчитал значение числа Пи как отношение 22 / 7 ≈ 3,142857142857143.

В Китае, математик и придворный астроном, Цзу Чунчжи в V веке до н. э. обозначил более точное значение числа Пи, рассчитав его до семи цифр после запятой и определил его значение между числами 3, 1415926 и 3,1415927. Более 900 лет понадобилось ученым, чтобы продолжить дальше этот цифровой ряд.

Средние века

Известный индийский ученый Мадхава, который жил на рубеже XIV - XV веков, ставший основателем Керальской школы астрономии и математики, впервые в истории стал работать над разложением тригонометрических функций в ряды. Правда, сохранились всего лишь два его труда, а на другие известны лишь ссылки и цитаты его учеников. В научном трактате «Махаджьянаяна», который приписывают Мадхаве, указано, что число Пи равно 3,14159265359. А в трактате «Садратнамала» приведено число с еще большим количеством точных знаков после запятой: 3,14159265358979324. В указанных числах последние цифры не соответствуют правильному значению.

В XV веке самаркандский математик и астроном Ал-Каши вычислил число Пи с шестнадцатью знаками после запятой. Его результат считался наиболее точным в течение последующих 250 лет.

У. Джонсон, математик из Англии, одним из первых смог обозначить отношение длины окружности к ее диаметру буквой π. Пи - это первая буква греческого слова «περιφέρεια» - окружность. Но этому обозначению удалось стать общепринятым лишь после того, как им воспользовался в 1736 году более известный ученый Л. Эйлер.

Заключение

Современные ученые продолжают работать над дальнейшими вычислениями значений числа Пи. Для этого уже используют суперкомпьютеры. В 2011 г. ученый из Сигэру Кондо, сотрудничая с американским студентом Александром Йи, произвели правильный расчет последовательности из 10 триллионов цифр. Но до сих пор так и неясно, кто открыл число Пи, кто впервые задумался над этой проблемой и произвел первые расчеты этого, по-настоящему мистического числа.

Сегодня день рождения числа Пи, который, по инициативе американских математиков, отмечается 14 марта в 1 час и 59 минут пополудни. Связано это с более точным значением числа Пи: все мы привыкли считать эту константу как 3,14, но число можно продолжить так: 3, 14159... Переводя это в календарную дату, получаем 03.14, 1:59.

Фото: АиФ/ Надежда Уварова

Профессор кафедры математического и функционального анализа Южно-Уральского государственного университета Владимир Заляпин говорит, что «днём числа Пи» всё же следует считать 22 июля, потому что в европейском формате дат этот день записывается как 22/7, а значение этой дроби приблизительно равно значению Пи.

«История числа, дающего отношение длины окружности к диаметру окружности, уходит в далёкую древность, — рассказывает Заляпин. — Уже шумеры и вавилоняне знали, что это это отношение не зависит от диаметра окружности и является постоянным. Одно из первых упоминаний о числе Пи можно встретить в текстах египетского писца Ахмеса (около 1650 года до н. э.). Древние греки, много позаимствовавшие у египтян, внесли свой вклад в развитие этой загадочной величины. По легенде, Архимед был настолько увлечён расчётами, что не заметил, как римские солдаты взяли его родной город Сиракузы. Когда римский солдат подошёл к нему, Архимед закричал по-гречески: «Не трогай моих кругов!». В ответ солдат заколол его мечом.

Платон получил довольно точное значение числа Пи для своего времени — 3,146. Лудольф ванн Цейлен провёл большую часть своей жизни над расчётами первых 36 цифр после запятой числа Пи, и они были выгравированы на его надгробной плите после смерти».

Иррациональное и ненормальное

По словам профессора, во все времена погоня за вычислением новых десятичных знаков обуславливалась желанием получить точное значение этого числа. Предполагалось, что число Пи рациональное и, следовательно, может быть выражено простой дробью. А это в корне неверно!

Число Пи популярно ещё и потому, что оно — мистическое. С древних времён существовала религия почитателей константы. Помимо традиционного значения Пи — математической константы (3,1415...), выражающей отношение длины окружности к её диаметру, есть масса других значений цифры. Любопытны такие факты. В процессе измерений размеров Великой пирамиды в Гизе оказалось, что она имеет такое же соотношение высоты к периметру своего основания, как радиус окружности к её длине, то есть ½ Пи.

Если рассчитать длину экватора Земли с использованием числа Пи с точностью до девятого знака, ошибка в расчётах составит всего около 6 мм. Тридцати девяти знаков после запятой в числе Пи достаточно для вычисления длины окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью не большей, чем радиус атома водорода!

Изучением Пи занимается в том числе и математический анализ. Фото: АиФ/ Надежда Уварова

Хаос в цифрах

По словам профессора математики, в 1767 году Ламберт установил иррациональность числа Пи, то есть невозможность представить его отношением двух целых. Это означает, что последовательность десятичных знаков числа Пи — это хаос, овеществлённый в цифрах. Иными словами, в «хвосте» десятичных знаков содержится любое число, любая последовательность чисел, любые тексты, которые были, есть и будут, да только извлечь эту информацию не представляется возможным!

«Точное значение числа Пи узнать невозможно, — продолжает Владимир Ильич. — Но попытки эти не оставляются. В 1991 году Чудновские добились новых 2260000000 десятичных знаков константы, а в 1994 году — 4044000000. После этого количество верных знаков числа Пи нарастало лавинообразно».

Мировой рекорд по запоминанию числа Пи у китайца Лю Чао , который сумел запомнить 67890 знаков после запятой без ошибки и воспроизвести их в течение 24 часов и 4 минут.

О «золотом сечении»

Кстати, связь между «пи» и другой удивительной величиной — золотым сечением — на самом деле так и не доказана. Люди давно заметили, что «золотая» пропорция — она же число Фи — и число Пи, делённое на два, различаются между собой меньше, чем на 3% (1,61803398... и 1,57079632...). Однако для математики эти три процента — разница слишком существенная, чтобы считать эти значения тождественными. Точно так же можно сказать, что число Пи и число Фи являются родственниками ещё одной известной постоянной — числа Эйлера, так как корень из него близок к половине числа Пи. Одна вторая Пи — 1, 5708, Фи — 1,6180, корень из Е — 1, 6487.

Это — лишь часть значения Пи. Фото: Скриншот

День рождения Пи

В Южно-Уральском государственном университете день рождения константы отмечают все преподаватели и студенты-математики. Так было всегда — нельзя сказать, что интерес появился лишь в последние годы. Число 3,14 приветствуют даже специальным праздничным концертом!

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια — окружность, периферия и περιµετρoς — периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) — угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} — arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 — 4(\frac{1}{3} + \frac{1}{5} — \frac{1}{7} + \frac{1}{9} — \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x — \frac{x^3}{3} + \frac{x^5}{5} — \frac{x^7}{7} + \frac{x^9}{9} — \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 — \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} — \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли — Боруэйна — Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} — \frac{2}{8k+4} — \frac{1}{8k+5} — \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n — 1} — \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} — 1} — \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. — История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. — М.: Эксмо, 2011. — 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи


Top