Почему правило вант гоффа называют эмпирическим. Влияние температуры на скорость реакции Правило Вант-Гоффа

приближённое правило, согласно которому при повышении температуры на 10°С скорость химической реакции увеличивается примерно в 2-4 раза. Найдено Я. Х. Вант-Гоффом. См. Кинетика химическая.

  • - правило, сформулированное Вант-Гоффом и дополненное Аррениусом, которое в биологической модификации гласит, что скорость обмена веществ организмов при повышении температуры на 10° может быть...

    Экологический словарь

  • - показатель, обозначаемый «i», увеличения числа частиц растворённого вещества вследствие диссоциации молекулы на ионы: i= 1 +α, где α - степень диссоциации, k - число молекул ионов, образованных при диссоциации...

    Энциклопедический словарь по металлургии

  • - деревянные кружки, привязывающиеся к вантам. Через отверстия, имеющиеся у этих кружков, проходят снасти бегучего такелажа и тем самым предохраняются от трения о ванты...

    Морской словарь

  • - Якоб Хендрик, нидерландский химик, один из основателей стереохимии, физической химии. Сформулировал теорию пространственного расположения атомов в молекулах...

    Современная энциклопедия

  • - Го́ффа, Хоффа Альберт, немецкий хирург, ортопед. Автор руководств по ортопедической хирургии, переломам и вывихам, технике массажа, кинезотерапии, атласа ортопедических повязок и бандажей...

    Большой энциклопедический словарь

  • - "...вант: гибкий несущий элемент моста вантово-балочной системы, передающий усилия с балки жесткости на пилон..." Источник: " СП 35.13330.2011. Свод правил. Мосты и трубы. Актуализированная редакция СНиП 2.05...

    Официальная терминология

  • - нидерландский ученый; род. в 1852 г. в Роттердаме; учился в Дельфте, Лейдене, Бонне, Париже и Утрехте, был сперва профессором в Утрехте, потом в Амстердаме, а затем приглашен в Берлин...
  • - хирург-ортопед; род. в 1859 г.; с 1897 г. профессор Вюрцбургского университета...

    Энциклопедический словарь Брокгауза и Евфрона

  • - хирург-ортопед, род. в 1859 г., с 1897 г. профес...

    Энциклопедический словарь Брокгауза и Евфрона

  • - Якоб Хендрик, голландский химик, один из основателей современной физической химии и стереохимии. В 1871 окончил Политехническую школу в Делфте, после чего работал в Лейдене, Бонне и Париже...
  • - осмотического давления, определяет давление молекул растворённого вещества на полупроницаемую перепонку, отделяющую раствор от чистого растворителя и непроницаемую для растворённого вещества...

    Большая Советская энциклопедия

  • - ...

    Орфографический словарь-справочник

  • - Вант-Г"офф, -а: зак"он Вант-Г"...

    Русский орфографический словарь

  • - ВАНТ * vente f. Продажа. Он <Золя> выделяет их них <покупателей> три-четыре лица: одну графиню.. кумушку из провинции, являющуюся на каждую новую vente. Набл. 1883 12 1 224...

    Исторический словарь галлицизмов русского языка

  • - китайский титул, соотв. нашему «князь»...
  • - Деревянные блоки на купеческих кораблях, привязываемые к вантам...

    Словарь иностранных слов русского языка

"Вант-Гоффа правило" в книгах

Вант-Гофф Якоб Хендрик (1852-1911) Нидерландский физико-химик

Из книги Великие открытия и люди автора Мартьянова Людмила Михайловна

Вант-Гофф Якоб Хендрик (1852-1911) Нидерландский физико-химик Якоб Хендрик Вант-Гофф родился 30 августа 1852 года в Роттердаме (Нидерланды) в семье врача и знатока Шекспира Якоба Хендрика Вант-Гоффа и Алиды Якобы Колф третьим из семи детей. Он мечтал о карьере химика. Однако

Правило 13: Создавай открытое пространство. "Правило двух секунд"

Из книги 70 Правил Защитного Вождения автора Шаллер Роберт

Правило 13: Создавай открытое пространство. "Правило двух секунд" Обеспечивай собственную безопасность, активно создавая открытое пространство вокруг машины. Не позволяй им ограничивать твою свободу передвижения. Обилие свободного пространства дает лишнее время и

ЯКОБ ГЕНРИК ВАНТ-ГОФФ (1852–1911)

Из книги Великие химики. В 2-х т. Т. 2 автора Манолов Калоян

ЯКОБ ГЕНРИК ВАНТ-ГОФФ (1852–1911) Был теплый воскресный день, один из тех ясных весенних дней, которым так радуются после длинной, уже надоевшей зимы. Почки на деревьях набухали буквально на глазах, краски в саду волшебно менялись. Еще утром парк был серым и неприветливым,

ЯКОБ ВАНТ-ГОФФ

Из книги 100 великих нобелевских лауреатов автора Мусский Сергей Анатольевич

ЯКОБ ВАНТ-ГОФФ (1852- 1911)Вант- Гофф получил первую Нобелевскую премию по химии за открытие законов химической динамики и осмотического давления. Этой высокой наградой была отмечена важность молодой области науки -физической химии.Ученый, пользовавшийся всеобщим

Вант-Гофф Якоб Хендрик

БСЭ

Вант-Гоффа закон

Из книги Большая Советская Энциклопедия (ВА) автора БСЭ

Вант-Гоффа правило

Из книги Большая Советская Энциклопедия (ВА) автора БСЭ

Правило, як правило, як звичайно, як водиться, як заведено

Из книги Як ми говоримо автора Антоненко-Давидович Борис Дмитрович

Болезнь Гоффа

Из книги Большой справочник по массажу автора Васичкин Владимир Иванович

Болезнь Гоффа

Из книги Массаж. Уроки великого мастера автора Васичкин Владимир Иванович

Болезнь Гоффа Гиперплазия жировой ткани под наколенником характеризуется небольшой болью при движениях, болезненностью при пальпации, припухлостью по сторонам связки надколенника. Чаще это заболевание наблюдается у спортсменов. В последующем жировая ткань заменяется

Правило первого въезда и правило основной страны

Из книги Как объехать всю Европу за 300 евро автора Ризо Елена

Правило первого въезда и правило основной страны Сколько бы мнений по поводу так называемого правила первого въезда ни существовало, при путешествии по странам Шенгенской зоны все же стоит обратить внимание на некоторые серьезные ограничения.Итак, получив шенгенскую

автора Лопухин Александр

9. А говорят: "кого хочет он учить ведению? и кого вразумлять проповедью? отнятых от грудного молока, отлученных от сосцов матери? 10. Ибо все заповедь на заповедь, заповедь на заповедь, правило на правило, правило на правило, тут немного и там немного". На обличения Исаии

Из книги Толковая Библия. Том 5 автора Лопухин Александр

13. И стало у них словом Господа: заповедь на заповедь, заповедь на заповедь, правило на правило, правило на правило, тут немного, там немного, - так что они пойдут, и упадут навзничь, и разобьются, и попадут в сеть и будут уловлены. Словом Господа - правильнее: "со словом

Правило 100. Находите новое правило каждый день. Или хотя бы ищите его

Из книги Правила жизни [Как добиться успеха и стать счастливым] автора Темплар Ричард

Правило 100. Находите новое правило каждый день. Или хотя бы ищите его Вот мы и познакомились с 99 правилами успешной жизни. Наконец-то. Однако не думайте, что это все. Нет времени сидеть сложа руки; для того, кто принимает эти правила, нет перерывов на кофе. Как только вы

20. Типы фаз в металлических сплавах. Правило фаз; правило рычага

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

20. Типы фаз в металлических сплавах. Правило фаз; правило рычага Диаграмма состояния – это графическое изображение состояния любого сплава изучаемой системы в зависимости от его концентрации и температуры.Изучение любого сплава начинается с построения и анализа

Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость большинства реакций изменяется в 2-4 раза.

Математически правило Вант-Гоффа выражается так:

где v(T2) и v(T1) - скорости реакций, соответственно при температурах Т2 и T1 (T2> T1);

γ-температурный коэффициент скорости реакции.

Значение γ для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2-4.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.

Поскольку скорость реакции и константа скорости химической реакции прямопропорциональны, то выражение (3.6) часто записывают в следующем виде:

(3.7)

где k(T2), k(T1)- константы скорости реакции соответственно

при температурах T2 и T1;

γ -температурный коэффициент скорости реакции.

Пример 8. На сколько градусов надо повысить температуру, что бы скорость реакции возросла в 27 раз? Температурный коэффициент реакции равен 3.

Решение. Используем выражение (3.6):

Получаем: 27 = , = 3, DТ = 30.

Ответ: на 30 градусов.

Скорость реакции и время, за которое она протекает, связаны обратно пропорциональной зависимостью: чем больше v, тем

меньше t. Математически это выражается соотношением

Пример 9. При температуре 293 К реакция протекает за 2 мин. За какое время будет протекать эта реакция при температуре 273 К, если γ = 2.

Решение. Из уравнения (3.8) следует:

.

Используем уравнение (3.6), поскольку Получим:

мин.

Ответ: 8 мин.

Правило Вант-Гоффа применимо для ограниченного числа химических реакций. Влияние температуры на скорость процес-сов чаще определяют по уравнению Аррениуса.

Уравнение Аррениуса . В 1889 г. шведский ученый С. Арре-1иус на основании экспериментов вывел уравнение, которое на-звано его именем

где k - константа скорости реакции;

k0 - предэксноненциальный множитель;

е - основание натурального логарифма;

Ea - постоянная, называемая энергией активации, определяемая природой реагентов:

R-универсальная газовая постоянная, равная 8,314 Дж/моль×К.

Значения Еa для химических реакций лежат в пределах 4 - 400 кДж/моль.

Многие реакции характеризуются определенным энергети-ческим барьером. Для его преодоления необходима энергия актации - некоторая избыточная энергия (по сравнению со вредней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т. е. привело бы к образованию нового ве-щества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции.

В общем случае, если температура реакции изменяется от Т1 до Т2, уравнение (3.9) после логарифмирования примет вид:

. (3.10)

Это уравнение позволяет рассчитывать энергию активации реакции при изменении температуры от Т1 до Т2.

Скорость химических реакций возрастает в присутствии катализатора. Действие катализатора заключается в том, что он образует с реагентами неустойчивые промежуточные соединения (активированные комплексы), распад которых приводит к. образованию продуктов реакции. При этом энергия активации, понижается, и активными становятся молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие, катализатора. В результате возрастает общее число активных£ молекул и увеличивается скорость реакции.

Изменение скорости реакции в присутствии катализатора выражается следующим уравнением:

, (3.11)

где vкат, и Ea(кат) - скорость и энергия активации химической реакции в присутствии катализатора;

v и Еа - скорость и энергия активации химической реакции без катализатора.

Пример 10 . Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, с катализатором - 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при температуре 298 К? Решение. Воспользуемся уравнением (3.11). Подставляя в уравнение данные

для студентов направления 6070104 «Морской и речной транспорт»

специальности

«Эксплуатация судового электрооборудования и средств автоматики»,

направления 6.050702 «Электромеханика» специальности

«Электрические системы и комплексы транспортных средств»,

«Электромеханические системы автоматизации и электропривод»

дневной и заочной форм обучения

Тираж_____экз. Подписано к печати_____________.

Заказ №________. Объем 1,08 п.л.

Изд-во “Керченский государственный морской технологический университет

98309 г. Керчь, Орджоникидзе, 82.

Правило Вант- Гоффа. Уравнение Аррениуса.

Согласно эмпирическому правилу Вант - Гоффа, сформулированному около 1880г., скорость большинства реакций увеличивается в 2-4 раза при повышении температуры на 10 градусов, если реакция проводится при температуре, близкой к комнатной. Например, время полуразложения газообразного оксида азота (V) при 35°С составляет около 85мин., при 45°С-около 22мин. и при 55°С - около 8мин.

Мы уже знаем, что при любой постоянной температуре скорость реакции описывается эмпирическим кинетическим уравнением, представляющим в большинстве случаев (за исключением реакции с весьма сложным механизмом) произведение константы скорости на концентрации реагентов в степенях, равных порядкам реакции. Концентрации реагентов практически не зависят от температуры, порядки, как показывает опыт,- тоже. Следовательно, за резкую зависимость скорости реакции от температуры ответственны константы скоростей. Зависимость константы скорости от температуры принято характеризовать температурным коэффициентом скорости реакции , которыйпредставляет собой отношение констант скорости при температурах, отличающихся на 10 градусов

и который по правилу Вант - Гоффа равен приблизительно 2-4.

Попытаемся объяснить наблюдаемые высокие значения температурных коэффициентов скоростей реакции на примере гомогенной реакции в газовой фазе с позиций молекулярно-кинетической теории газов. Чтобы молекулы взаимодействующих газов прореагировали друг с другом, необходимо их столкновение, при котором одни связи рвутся, а другие образуются, в результате чего и появляется новая молекула - молекула продукта реакции. Следовательно, скорость реакции зависит от числа столкновений молекул реагентов, а число столкновений, в частности, - от скорости хаотического теплового движения молекул. Скорость молекул и соответственно число столкновений растут с температурой. Однако только повышение скорости молекул не объясняет столь быстрого роста скоростей реакций с температурой. Действительно, согласно молекулярно-кинетической теории газов средняя скорость молекул пропорциональна квадратному корню из абсолютной температуры, т.е, при повышении температуры системы на 10 градусов, скажем, от 300 до 310К, средняя скорость молекул возрастет лишь в 310/300 = 1,02 раза - гораздо меньше, чем требует правило Вант -Гоффа.

Таким образом, одним только увеличением числа столкновений нельзя объяснить зависимость констант скоростей реакции от температуры. Очевидно, здесь действует еще какой-то важный фактор. Чтобы вскрыть его, обратимся к более подробному анализу поведения большого числа частиц при различных температурах. До сих пор мы говорили о средней скорости теплового движения молекул и ее изменении с температурой, но если число частиц в системе велико, то по законам статистики отдельные частицы могут иметь скорость и соответственно киетическую энергию, в большей или меньшей степени отклоняющуюся от среднего значения для данной температуры. Эта ситуация изображена на рис. (3.2), который

показывает, как распределены части-


3.2. Распределение частиц по кинетической энергии при различных температурах:

2-Т 2 ; 3-Т 3 ; Ti

цы по кинетической энергии при определенной температуре. Рассмотрим, например, кривую 1, отвечающую температуре Ti. Общее число частиц в системе (обозначим его N 0) равно площади под кривой. Максимальное число частиц, равное Ni, обладает наиболее вероятной для данной температуры кинетической энергией Е 1 . Более высокую энергию будут иметь частицы, число которых равно площади под кривой справа от вертикали Е 1 , а площадь слева от вертикали отвечает частицам с энергией меньше Е

Чем больше кинетическая энергия отличается от средней, тем меньше частиц обладают ею. Выберем, например, некоторую энергию Е а, большую чем Е 1 }. При температуре Ti число частиц, энергия которых превышает величину Е а, составляет лишь малую часть от общего числа частиц - это зачерненная площадь под кривой 1 справа от вертикали Е а. Однако при более высокой температуре Т 2 уже больше частиц обладает энергией, превышающей Е а (кривая 2), а при дальнейшем повышении температуры до Т 3 (кривая 3) энергия Е а оказывается близкой к средней, и такой запас кинетической энергии будет иметь уже около половины всех молекул.

Скорость реакции определяется не общим числом столкновений молекул в единицу времени, а той его частью, в которой принимают участие молекулы, кинетическая энергия которых превышает некоторый предел Е а, называемый энергией активации реакции. Это становится вполне понятным, если мы вспомним, что для успешного протекания элементарного акта реакции необходимо, чтобы при столкновении произошел разрыв старых связей и были бы созданы условия для образования новых. Конечно, на это требуется затратить энергию – нужно, чтобы сталкивающиеся частицы обладали достаточным ее запасом.

Шведский ученый С.Аррениус установил, что возрастание скорости большинства реакций при повышении температуры происходит нелинейно (в отличие от правила Вант - Гоффа). Аррениус установил, что в большинстве случаев константа скорости реакции подчиняется уравнению

LgK=lgA - , (3.14)

которое получило название уравнения Аррениуса .

Е а - энергия активации (см. ниже)

R - молярная газовая постоянная, равная 8,314 Дж/моль۰К,

Т - абсолютная температура

А - постоянная или очень мало зависящая от температуры величина. Ее называют частотным фактором, так как она связана с частотой молекулярных столкновений и вероятностью того, что столкновение происходит при ориентации молекул, благоприятной для реакции. Как видно из (3.14) при увеличении энергии активации Е а константа скорости К уменьшается. Следовательно, скорость реакции уменьшается при повышении ее энергетического барьера (см. ниже).

Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость большинства реакций изменяется в 2-4 раза.

Математически правило Вант-Гоффа выражается так:

где v(T2) и v(T1) — скорости реакций, соответственно при температурах Т2 и T1 (T2> T1);

γ-температурный коэффициент скорости реакции.

Значение γ для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2-4.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.

Поскольку скорость реакции и константа скорости химической реакции прямопропорциональны, то выражение (3.6) часто записывают в следующем виде:

(3.7)

где k(T2), k(T1)- константы скорости реакции соответственно

при температурах T2 и T1;

γ -температурный коэффициент скорости реакции.

Пример 8. На сколько градусов надо повысить температуру, что бы скорость реакции возросла в 27 раз? Температурный коэффициент реакции равен 3.

Решение. Используем выражение (3.6):

Получаем: 27 = , = 3, DТ = 30.

Ответ: на 30 градусов.

Скорость реакции и время, за которое она протекает, связаны обратно пропорциональной зависимостью: чем больше v, тем

меньше t. Математически это выражается соотношением

Пример 9. При температуре 293 К реакция протекает за 2 мин. За какое время будет протекать эта реакция при температуре 273 К, если γ = 2.

Решение. Из уравнения (3.8) следует:

.

Используем уравнение (3.6), поскольку Получим:

мин.

Правило Вант-Гоффа применимо для ограниченного числа химических реакций. Влияние температуры на скорость процес-сов чаще определяют по уравнению Аррениуса.

Уравнение Аррениуса . В 1889 г. шведский ученый С. Арре-1иус на основании экспериментов вывел уравнение, которое на-звано его именем

где k — константа скорости реакции;

k0 — предэксноненциальный множитель;

е — основание натурального логарифма;

Ea — постоянная, называемая энергией активации, определяемая природой реагентов:

R-универсальная газовая постоянная, равная 8,314 Дж/моль×К.

Значения Еa для химических реакций лежат в пределах 4 — 400 кДж/моль.

Многие реакции характеризуются определенным энергети-ческим барьером. Для его преодоления необходима энергия актации — некоторая избыточная энергия (по сравнению со вредней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т. е. привело бы к образованию нового ве-щества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции.

В общем случае, если температура реакции изменяется от Т1 до Т2, уравнение (3.9) после логарифмирования примет вид:

. (3.10)

Это уравнение позволяет рассчитывать энергию активации реакции при изменении температуры от Т1 до Т2.

Скорость химических реакций возрастает в присутствии катализатора. Действие катализатора заключается в том, что он образует с реагентами неустойчивые промежуточные соединения (активированные комплексы), распад которых приводит к. образованию продуктов реакции. При этом энергия активации, понижается, и активными становятся молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие, катализатора. В результате возрастает общее число активных£ молекул и увеличивается скорость реакции.

Изменение скорости реакции в присутствии катализатора выражается следующим уравнением:

, (3.11)

где vкат, и Ea(кат) — скорость и энергия активации химической реакции в присутствии катализатора;

v и Еа — скорость и энергия активации химической реакции без катализатора.

Пример 10 . Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, с катализатором — 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при температуре 298 К? Решение. Воспользуемся уравнением (3.11). Подставляя в уравнение данные

Еа = 75,24 кДж / моль = 75,24 ×103 Дж / моль и

Еа(кат)=- 50,14 кД/моль= 50,14 ×103 Дж /моль, получим

Окончательно находим:

Таким образом, снижение энергии активации на 25,1 кДж/моль привело к увеличению скорости реакции в 25 000 раз.

chimical-docs.ru

Популярная химия

Главное меню

Зависимость скорости протекания химической реакции от температуры определяется правилом Вант-Гоффа.

Голландский химик Вант-Гофф Якоб Хендрик, основатель стереохимии, в 1901 г. стал первым лауреатом Нобелевской премии по химии. Она была присуждена ему за открытие законов химической динамики и осмотического давления. Вант-Гофф ввёл представления о пространственном строении химических веществ. Он был уверен, что прогресса в фундаментальных и прикладных исследованиях по химии можно достичь, применяя физические и математические методы. Разработав учение о скорости реакций, он создал химическую кинетику.

Скорость химической реакции

Итак, кинетикой химических реакций называют учение о скорости протекания, о том, какое химической взаимодействие происходит в процессе реакций, и о зависимости реакций от различных факторов. У различных реакций скорость протекания различна.

Скорость химической реакции напрямую зависит от природы химических веществ, вступающих в реакцию. Некоторые вещества, такие как NаОН и НCl, способны реагировать за доли секунды. А некоторые химические реакции длятся годами. Пример такой реакции – ржавление железа.

Скорость реакции зависит также и от концентрации реагирующих веществ. Чем выше концентрация реагентов, тем выше и скорость реакции. В ходе реакции концентрация реагентов уменьшается, следовательно, замедляется и скорость реакции. То есть, в начальный момент скорость всегда выше, чем в любой последующий.

Концентрации реагентов определяют через определённые промежутки времени.

Правило Вант-Гоффа

Важным фактором, от которого зависит скорость протекания реакций, является температура.

Все молекулы сталкиваются с другими. Число соударений в секунду очень велико. Но, тем не менее, химические реакции не протекают с огромной скоростью. Так происходит, потому что в ходе реакции молекулы должны собраться в активированный комплекс. А образовать его могут только активные молекулы, кинетической энергии которых достаточно для этого. При малом количестве активных молекул реакция протекает медленно. При повышении температуры увеличивается число активных молекул. Следовательно, и скорость реакции будет выше.

Вант-Гофф считал, что скорость химической реакции – это закономерное изменение концентрации реагирующих веществ в единицу времени. Но оно не всегда является равномерным.

Правило Вант-Гоффа гласит, что при повышении температуры на каждые 10 о скорость химической реакции увеличивается в 2-4 раза .

Математически правило Вант-Гоффа выглядит так:

где V 2 t 2 , а V 1 – скорость протекания реакции при температуре t 1 ;

ɣ — температурный коэффициент скорости реакции. Этот коэффициент есть отношение констант скоростей при температуре t+10 и t .

Так, если ɣ = 3, а при 0 о С реакция длится 10 минут, то при 100 о С она будет продолжаться всего 0,01 сек. Резкое увеличение скорости протекания химической реакции объясняется увеличением количества активных молекул при повышении температуры.

Правило Вант-Гоффа применимо только в температурном диапазоне 10-400 о С. Не подчиняются правилу Вант-Гоффа и реакции, в которых участвуют большие молекулы.

Правило вант-гоффа примеры

Подставим известные данные:
=4 30/10 =4 3 = 64, где t 2 -конечная температура (97 0), а t 1 -начальная температура (67 0). Следовательно при повышении температуры от 67 0 до 97 0 скорость гомогенной реакции увеличится в 64 раза.

Рассчитайте чему равен температурный коэффициент скорости, если известно, что понижении температуры от 150 0 до 120 0 скорость реакции уменьшилась в 27 раз.

Запишем формулу закона Вант-Гоффа:

и выразим из неё :

Подставим данные
=
=3

где t 2 =120, t 1 =150 (температура понижается), а отношение конечной скорости к начальной, т. к. при уменьшении температуры скорость уменьшается.

Задачи с использованием закона объёмных отношений

Формулировка закона: если в реакцию вступают газообразные вещества и такие же вещества образуются в результате реакции, то их обёмы относятся друг к другу как небольшие целые числа, равные стехиометрическим коэффициентам в уравнении реакции перед формулами этих веществ. Например, для гомогенной реакции aA + bB = cC + dD формула будет выглядеть следующим образом:

,

Этот закон относится к основным законам химии и может быть применён в химической кинетике применительно к концентрации.

Реакция идет по уравнению 2Н 2(г) +O 2(г) =2Н 2 O (г) . Концентрации исходных веществ до начала реакции были [Н 2 ]=0,06 моль/л, =0,02 моль/л. вычислите концентрации этих веществ в момент, когда [Н 2 O]=0,01 моль/л.

В этой реакции Н 2(г) и O 2(г) относятся к исходным веществам, концентрация которых с течением времени уменьшается по мере того, как эти вещества расходуются, а Н 2 O (г) – к продуктам реакции, концентрация которых с течением времени увеличивается по мере того, как эти вещества образуются. Из закона объёмных отношений следует, что один объём О 2 взаимодействует с двумя объёмами Н 2 и при этом образуется два объёма Н 2 O, т. е. если получается 0,01 моль/л Н 2 O, то расходуется столько же Н 2 и в два раза меньше О 2 . В виде формулы это можно записать следующим образом:

: отсюда x =0,01 моль/л

где обр-образованное и изр-израсходованное

: отсюда x =0,005 моль/л

Таким образом концентрации этих веществ в момент, когда [Н 2 O]=0,01 моль/л будет равна: = нач - изр =0,06-0,01=0,05моль/л и = нач - изр =0,02-0,005=0,015 моль/л (где нач- начальная концентрация веществ)

До начала реакции концентрации исходных веществ в гомогенной системе K +2 L =3 M + F

были равны: =0,5 моль/л, [L]=0,12 моль/л. Найдите концентрации всех веществ на тот момент времени, когда концентрация L уменьшилась в три раза.

При уменьшении концентрации L в три раза, на данный момент времени она будет равна [L] = [L] нач / 3 = 0,12 / 3 =0,4 моль/л. Следовательно, в ходе реакции израсходовалось некоторое количество вещества L : [L] изр = [L] нач -[L] = 0,12 – 0,4 = 0,8 моль/л. В случае определения концентрации вещества К следует помнить, что вещество L не расходуется само по себе, а вступает в реакцию с К в соотношении 2 к 1, т. е.
, отсюдах = 0,4 моль/л

_ Значит на данный момент времени концентрация вещества К будет равна [К] = [К] нач -[К] изр = 0,5 – 0,4.= 0,1 моль/л. Также по закону объёмных отношений можно найти и концентрации образованных веществ M и F :

, отсюда х = 0,12 моль/л.

Концентрацию вещества F можно найти таким же образом по концентрации K или L , а можно и полученной концентрации М :

, отсюда х = 0,4 моль/л

Поскольку не были даны исходные концентрации этих веществ, то мы можем считать, что начальная концентрация продуктов реакции равна нулю. Следовательно, на тот момент времени, когда концентрация L уменьшилась в три раза, концентрации других веществ будут равны: [К] = 0,1 моль/л;[M] = 0,12 моль/л; [F] =0,4 моль/л

СОВЕТ: в формулу закона необходимо подставлять не начальные или конечные концентрации для исходных веществ, а именно израсходованные, прореагировавшие.

В химических реакциях исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаваться условия для протекания обратимой реакции в противоположном направлении.

Например, если смешать пары иода с водородом при температуре 200 ° С, то произойдет реакция:

Однако известно, что йодистый водород уже при нагревании до 180 °С начинает разлагаться на иод и водород:

Понятно, что в этих условиях не произойдет ни полного разложения НI, так как продукты реакции способны вновь реагировать между собой, ни полного образования йодистого водорода

Обратимая химическая реакция – это реакция, в ходе которой происходят превращения как в прямом, так и в обратном направлениях, Первым, кто четко сформулировал представление об обратимости химических реакций, был К.Бертолле (1799). Участвуя в Египетской экспедиции Бонапарта, он обратил внимание на образование карбоната натрия в соляных озерах и пришел к заключению, что карбонат натрия образуется в результате взаимодействия между насыщенным раствором хлорида натрия и растворенным карбонатом кальция. Этот процесс обратен проводимой в лаборатории реакции между карбонатом натрия и растворенным хлоридом кальция с образованием карбоната кальция.

При написании уравнений обратимых реакций вместо знака равенства ставят две противоположно направленные стрелки. Уравнение рассмотренной выше обратимой реакции запишется следующим образом:

Реакцию, протекающую слева направо называют прямой (константа скорости прямой реакции k 1), справа налево - обратной (константа скорости обратной реакции k 2).

В обратимых реакциях скорость прямой реакции вначале имеет максимальное значение, а затем уменьшается вследствие уменьшения концентрации исходных веществ, расходуемых на образование продуктов реакции. И наоборот, обратная реакция в начальный момент имеет минимальную скорость, которая увеличивается по мере увеличения концентрации продуктов реакции. Следовательно, скорость прямой реакции уменьшается, а обратной - увеличивается. Наконец, наступает такой момент, когда скорости прямой и обратной реакций становятся равными.

График изменения скоростей прямой и обратной реакции во времени 1

График изменения скоростей прямой и обратной реакции во времени 2

V V 1 — скорость прямой реакции

V 2 — скорость обратной реакции

V 1 =V 2 – состояние химического равновесия

V 1 =V 2

Химическое равновесие — состояние системы, в котором скорость прямой реакции (V 1) равна скорости обратной реакции (V 2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Положение равновесия можно определить, зная скорости прямой и обратной реакций. Уравнение обратимой реакции имеет вид

согласно закону действующих масс, скорости прямой реакции u 1 и обратной u 2 соответственно запишутся следующим образом:

В равновесии скорости прямой и обратной реакций равны:

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K 1) и обратной (K 2) реакций. Преобразуем эту формулу и получим:

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции, т. е. численное значение константы равновесия характеризует тенденцию к осуществлению реакции или, другими словами, характеризует выход данной реакции. Так, при К >> 1 выход реакции велик (равновесие смещено в сторону прямой реакции), так как при этом

Химик.ПРО – решение задач по химии бесплатно

Как необходимо изменить температуру в системе, чтобы скорость химической реакции увеличить в 81 раз. Температурный коэффициент равен 3? Правило Вант-Гоффа .

Решение задачи

Зависимость скорости химической реакции от температуры определяет правило Вант-Гоффа , которым мы воспользуемся при решении задачи.

Напомню правило Вант-Гоффа: скорость большинства химических реакций при повышении температуры на каждые 10 о С возрастает в 2-4 раза.

Математически правило Вант-Гоффа выражается формулой:

– температурный коэффициент;

– скорость химической реакции при температурах, соответственно.

Учитывая то, что по условию задачи температурный коэффициент равен 3, вычислим, как необходимо изменить температуру в системе, чтобы скорость химической реакции увеличить в 81 раз:

То есть, по правилу Вант-Гоффа необходимо повысить температуру в системе в на 40 о С.

по правилу Вант-Гоффа необходимо повысить температуру на 40 о С.

ВАНТ-ГОФФА ПРАВИЛО

ВАНТ-ГОФФА ПРАВИЛО. Почти все химические реакции при повышении температуры идут быстрее. Зависимость скорости реакции от температуры описывается уравнением Аррениуса:

k = A e –E a/RT , где k константа скорости реакции, А не зависящая от температуры константа (ее называют предэкспоненциальным множителем), Е а энергия активации, R газовая постоянная, Т абсолютная температура. В школьных учебниках зависимость скорости реакции от температуры определяют в соответствии с так называемым «правилом Вант-Гоффа», которое в 19 в. сформулировал голландский химик Якоб Вант-Гофф. Это чисто эмпирическое правило, т.е. правило, основанное не на теории, а выведенное из опытных данных. В соответствии с этим правилом, повышение температуры на 10° приводит к увеличению скорости в 24 раза. Математически эту зависимость можно выразить уравнением v 2 v 1 = g (T 2 T 1)/10 , где v 1 и v 2 скорости реакции при температурах Т 1 и Т 2 ; величина g называется температурным коэффициентом реакции. Например, если g = 2, то при Т 2 Т 1 = 50 о v 2 /v 1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т 1 и Т 2 , а только от их разности.

Однако из уравнения Аррениуса следует, что температурный коэффициент реакции зависит как от энергии активации, так и от абсолютной температуры. Для данной реакции с определенным значением Е а ускорение при повышении температуры на 10° будет тем больше, чем ниже температура. Это почти очевидно и без расчетов: повышение температуры от 0 до 10° С должно сказаться на скорости реакции значительно сильнее, чем такое же повышение температуры, например, от 500 до 510° С.

С другой стороны, для данного температурного интервала ускорение реакции будет тем сильнее, чем больше ее энергия активации. Так, если энергия активации реакции мала, то такая реакция идет очень быстро, и при повышении температуры на 10° С ее скорость почти не изменяется. Для таких реакций температурный коэффициент намного меньше 2. Для реакций же с большой энергией активации, которые при невысоких температурах идут медленно, ускорение при повышении температуры на 10° С может значительно превысить 4-кратное.

Например, реакция диоксида углерода со щелочным раствором с образованием гидрокарбонат-иона (СО 2 + ОН® НСО 3 –) имеет энергию активации 38,2 кДж/моль, поэтому при повышении температуры, например, от 50 до 60° С эта реакция ускорится всего в 1,5 раза. В то же время реакция распада этилбромида на этилен и бромоводород (С 2 Н 5 Вr ® С 2 Н 4 + НВr) с энергией активации 218 кДж/моль ускорится при повышении температуры от 100 до 110 o С в 6,3 раза (правда, в этом интервале температур реакция идет очень медленно). Кинетика реакции атомов водорода с этаном H + C 2 H 6 ® H 2 + C 2 H 5 была изучены в широком температурном интервале – от 300 до 1100 К (27–827° С). Для этой реакции E а = 40,6 кДж/моль. Следовательно, повышение температуры на 10° вызовет увеличение скорости реакции в 1,7 раза в интервале 300–310 K и только в 1,04 раза в интервале 1090–1100 K. Так что при высоких температурах скорость этой реакции практически не зависит от температуры. А для реакции присоединения атома водорода к двойной связи H + C 2 H 4 ® C 2 H 5 энергия активации мала (E а = 3,4 кДж/моль, так что ее скорость слабо зависит от температуры в широком температурном интервале. И только при температурах намного ниже 0° С начинает сказываться наличие активационного барьера.

Подобных примеров можно привести множество. Очевидно, что правило Вант-Гоффа противоречит не только уравнению Аррениуса, но и многим экспериментальным данным. Откуда же оно взялось и почему нередко выполняется?

Если в приведенном выше математическом выражении для правила Вант-Гоффа подставить вместо скоростей v 1 и v 2 для данной реакции их зависимости от температуры, в соответствии с уравнением Аррениуса, то после сокращения предэкспоненциальных множителей получим следующее выражение: g = v T +10/v T = е –Е а/R (Т +10)/е –Е а/ = е (Е а/R ) . Логарифмироване этого уравнения дает: lng = (E а /R ), откуда Е а = R lng T (T + 10)/10 = 0,83lngT (T + 10). Энергия активации не является функцией температуры, эта зависимость нужна лишь для удобства последующего анализа. Последнее уравнение это уравнение параболы, в котором физический смысл имеют только положительные значения. Соответствующая диаграмма ограничена двумя ветвями параболы: при g = 2 получаем Е а = 0,58Т (Т + 10), при g = 4 получаем Е а = 1,16Т (Т + 10). К тем же формулам приходим и при использовании десятичных логарифмов. Соответствующие графики двух парабол, для значений g 2 и 4, приведены на рисунке. Их физический смысл заключается в том, что области выполнения правила Вант-Гоффа соответствует только область между параболами. Таким образом, существуют только определенные соотношения между энергией активации реакции и температурой ее проведения, при которых правило Вант-Гоффа выполняется. Ниже нижней ветви температурный коэффициент g 4.

Если посмотреть, какие реакции «укладываются» в указанную довольно узкую область, то окажется, что все эти реакции идут не слишком быстро и не слишком медленно, а с удобной для измерения (при данной температуре) скоростью. Скорость только таких реакций и могли изучать химики во времена Вант-Гоффа. Например, если энергия активации была невелика (меньше 50 кДж/моль), то такая реакция при комнатной температуре заканчивалась за 12 секунды; поэтому для изучения ее кинетики следовало значительно понизить температуру, чтобы реакция проходила не быстрее, чем за 1020 минут. Только в этом случае химики 19 в. успевали отбирать пробы по ходу реакции и анализировать изменение в них концентрации реагентов. Других способов изучения скорости реакции в то время не было. Если это не удавалось (например, водный раствор замерзал), то скорость такой реакции не изучали. Если же энергия активации реакции была велика и при комнатной температуре она шла слишком медленно (многие сутки, или даже недели), то температуру повышали, чтобы реакция шла с удобной для измерения скоростью. И здесь были свои ограничения – например, раствор мог закипеть, т.е. в любом случае исследователи фактически «подстраивали» изучаемую реакцию под область между двумя параболами.

Сейчас химики имеют возможность с помощью различных приборов экспериментально изучать и очень быстрые (идущие в микросекундной области), и очень медленные реакции, для которых температурный коэффициент может быть значительно меньше 2 или значительно больше 4. Поэтому правило Вант-Гоффа, которое, в отличие от уравнения Аррениуса, не имеет четкого физического смысла, представляет лишь чисто исторический интерес и в современной науке не используется. В подавляющем большинстве учебников и монографий по химической кинетике, а также в 5-томной Химической Энциклопедии это правило даже не упоминается. И, тем не менее, если изучаемая реакция идет с удобной для измерения скоростью, например, заканчивается за 3040 мин, а энергия активации ее еще не измерена, то для предварительной грубой оценки зависимости скорости такой реакции от температуры можно использовать правило Вант-Гоффа. Поэтому это правило приводится во всех школьных учебниках химии.

2. Правила заполнения ГТД при декларировании товаров, помещаемых под таможенный режим выпуска товаров для свободного обращения Правила декларирования товаров и транспортных средств 2. Правила заполнения ГТД при […]


Top