Знак строгого неравенства как он читается. Общие сведения о неравенствах

Определение и основные свойства неравенств.

Определения:

Неравенствами называют выражения вида a b) ,a>b (a≥ b) ,

где a и b могут быть числами или функциями.

Символы <(≤ ) , >( ≥ ) называются знаками неравенства и читаются соответственно:

меньше(меньше или равно) ,больше(больше или равно).

Неравенства, которые записываются с помощью знаков > и < ,называются строгими ,

а неравенства, в записи которых участвуют знаки ≥ и ≤,- нестрогими .

Неравенства вида aназываются двойными неравенствами

и читаются соответственно:x больше a ,но меньше b (x большеили равно a ,но меньше или равно b ).

Различают два вида неравенств: числовые (2>0 ,7 ;½ <6 ) и неравенства с переменной (5 x-40>0 ; x²-2x<0 ) .

Свойства числовых неравенств :

Числовые промежутки

Неравенство

Числовой

промежуток

Название

промежутка

Геометрическая

интерпретация

замкнутый промежуток(отрезок) с концами a и b ,a

открытый промежуток (интервал) с концами a и b ,a
полуоткрытые промежутки (полуинтервалы) концами a и b ,a

бесконечные промежутки (лучи)

бесконечные промежутки (открытые лучи)

бесконечный промежуток (числовая прямая)

О сновные определения и свойства.

Определения:

Решением неравенства с одной переменной называется значение переменной,

кот орое обращает его в верное числовое неравенство.

Решить неравенство - значит найти все его решения или доказать, что решений нет.

Неравенства, имеющие одни и те же решения, называются равносильными .

Неравенства, не имеющие решений, также считают равносильными.

При решении неравенств используются следующие свойства :

1) Если из одной части неравенства перенести в

другую слагаемое с противоположным знаком,

2) Если обе части неравенства умножить или

разделить на одно и то же положительное число,

то получится равносильное ему неравенство.

3) Если обе части неравенства умножить или

разделить на одно и то же отрицательное число,

изменив при этом знак неравенства на противоположный,

то получится равносильное ему неравенство.

Многие неравенства в процессе преобразований сводятся к линейным неравенствам .

Н еравенства вида ах>b (ах , где а и b - некоторые числа,

Называют линейными неравенствами с одной переменной.

Если a>0 ,то неравенство ax>b равносильно неравенству

и множество решений неравенства есть промежуток

Если a<0 ,то неравенство ax>b равносильно неравенству

и множество решений неравенства есть промежуток

неравенство примет вид 0∙ x>b , т.е. оно не имеет решений , если b≥0 ,

и верно при любых x ,если b<0 .

Аналитический способ решения неравенств с одной переменной.

Алгоритм решения неравенства с одной переменной

  • Преобразовать обе части неравенства.
  • Привести подобные слагаемые.
  • Привести неравенства к простейшему виду, на основании свойств неравенств.
  • Записать ответ.

Приведем примеры решения неравенств .

Пример 1. Решить неравенство 3x≤ 15.

Решение:

О бе части неравенства

р азделим на положительное число 3 (свойство 2 ) : x ≤ 5.

Множество решений неравенства представляет собой числовой промежуток (-∞;5] .

Ответ: (- ∞;5]

Пример 2 . Решить неравенство -10 x≥34 .

Решение:

О бе части неравенства р азделим на отрицательное число -10 ,

при этом знак неравенства изменим на противоположный (свойство 3 ) : x ≤ - 3,4.

Множество решений неравенства представляет собой промежуток (-∞;-3,4] .

Ответ : (-∞;-3,4] .

Пример 3. Решить неравенство 18+6x>0.

Решение:

Перенесем слагаемое 18 с противоположным знаком в левую часть неравенства (свойство 1): 6x>-18.

Разделим обе части на 6 (свойство 2 ) :

x>-3.

Множество решений неравенства представляет собой промежуток (-3;+∞ ).

Ответ: (-3;+∞ ).

Пример 4. Решить неравенство 3 (x-2)-4(x+2)<2(x-3)-2.

Решение:

Раскроем скобки : 3x-6-4x-8<2x-6-2 .

Перенесем члены,содержащие неизвестное,в левую часть,

а члены не содержащие неизвестное, в правую часть (свойство 1 ) :

3x-4x-2x<6+8-6-2.

Приведем подобные члены: -3 x<6.

Разделим обе части на -3 (свойство 3 ) :

x>-2.

Множество решений неравенства представляет собой промежуток (-2;+∞ ).

Ответ: (-2;+∞ ).

Пример 5 . Решить неравенство

Решение:

Умножим обе части неравенства на наименьший общий знаменатель дробей,

входящих в неравенство, т. е. на 6 (свойство 2 ) .

Получим:

,

2x-3x≤12.

Отсюда, - x≤12,x≥-12 .

Ответ: [ -12;+∞ ).

Пример 6 . Решить неравенство 3(2-x)-2>5-3x.

Решение:

6-3x-2>5-3x, 4-3x>5-3x,-3x+3x>5-4.

Приведем подобные члены в левой части неравенства и запишем результат в виде 0 x>1.

Полученное неравенство не имеет решений, так как при любом значении x

оно обращается в числовое неравенство 0 < 1, не являющееся верным.

Значит, не имеет решений и равносильное ему заданное неравенство.

Ответ: решений нет.

Пример 7 . Решить неравенство 2(x+1)+5>3-(1-2x) .

Решение:

Упростим неравенство,раскрыв скобки:

2x+2+5>3-1+2x, 2x+7>2+2x,2x-2x>2-7, 0∙ x>-5 .

Полученное неравенство является верным при любом значении x,

так как левая часть при любом x равна нулю,а 0>-5.

Множеством решения неравенства является промежуток (-∞;+∞ ).

Ответ: (-∞;+∞ ).

Пример 8 . При каких значениях x имеет смысл выражение:

b)

Решение:

а)По определению арифметического квадратного корня

должно выполнятся следующее неравенство 5x-3 ≥0.

Решая, получаем 5x≥3, x≥0,6.

Итак, данное выражение имеет смысл при всех x из промежутка , и т.д.

Чтобы не путать интервалы с отрезками, для них разработаны специальные обозначения: интервал всегда обозначается выколотыми точками, а отрезок - закрашенными. Например:

На этом рисунке отмечен отрезок и интервал (9; 11). Обратите внимание: концы отрезка отмечены закрашенными точками, а сам отрезок обозначается квадратными скобками. С интервалом все иначе: его концы выколоты, а скобки - круглые.

Метод интервалов для нестрогих неравенств

К чему была вся эта лирика про отрезки и интервалы? Очень просто: для решения нестрогих неравенств все интервалы заменяются отрезками - и получится ответ. По существу, мы просто добавляем к ответу, полученному методом интервалов, границы этих самых интервалов. Сравните два неравенства:

Задача. Решите строгое неравенство:

(x − 5)(x + 3) > 0

Решаем методом интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Справа стоит знак плюс. В этом легко в этом убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось выписать ответ. Поскольку нас интересуют положительные интервалы, имеем:

x ∈ (−∞; −3) ∪ (5; +∞)

Задача. Решите нестрогое неравенство:

(x − 5)(x + 3) ≥ 0

Начало такое же, как и для строгих неравенств: работает метод интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Отмечаем полученные корни на координатной оси:

В предыдущей задаче мы уже выяснили, что справа стоит знак плюс. Напомню, в этом легко убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось записать ответ. Поскольку неравенство нестрогое, а нас интересуют положительные значения, имеем:

x ∈ (−∞; −3] ∪ ∪ ∪ , а (−∞; −3] ∪

Задача. Решите неравенство:

x (12 − 2x )(3x + 9) ≥ 0

x (12 − 2x )(3x + 9) = 0;
x = 0;
12 − 2x = 0 ⇒ 2x = 12 ⇒ x = 6;
3x + 9 = 0 ⇒ 3x = −9 ⇒ x = −3.

x ≥ 6 ⇒ f (x ) = x (12 − 2x )(3x + 9) → (+) · (−) · (+) = (−) < 0;
x ∈ (−∞ −3] ∪ .

Например, неравенством является выражение \(x>5\).

Виды неравенств:

Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

Например:
\(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

\(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

\(2x+1\geq4(5-x)\)

Переменная только в первой степени

\(3x^2-x+5>0\)

Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

\(\log_{4}{(x+1)}<3\)

\(2^{x}\leq8^{5x-2}\)

... и так далее.

Что такое решение неравенства?

Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

\(x+6>10\) \(|-6\)
\(x>4\)

То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

Ответ: \(x\in(4;+\infty)\)

Когда в неравенстве меняется знак?

В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

\(3>1\) \(|\cdot2\)
\(6>2\)

Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

\(3>1\) \(|\cdot(-3)\)
\(-9>-3\)

Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
С делением получится аналогично, можете проверить сами.

Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

Пример: Решить неравенство \(2(x+1)-1<7+8x\)
Решение:

\(2x+2-1<7+8x\)

Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

\(2x-8x<7-2+1\)

\(-6x<6\) \(|:(-6)\)

Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

Запишем ответ в виде интервала

Ответ: \(x\in(-1;\infty)\)

Неравенства и ОДЗ

Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

Пример: Решить неравенство \(\sqrt{x+1}<3\)

Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

\(x+1<9\) \(|-1\)
\(x<8\)

Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

\(\sqrt{-5+1}<3\)
\(\sqrt{-4}<3\)

Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

\(x+1\geq0\)
\(x\geq-1\)

И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

Ответ: \(\left[-1;8\right)\)


Top