Умножение чисел с одинаковыми показателями. Правило деление степеней

Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней .

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .

Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени , или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого . Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:

a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.

С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

Если умножаются (или делятся) две степени, у которых разные основания, но одинаковые показатели, то их основания можно перемножить (или поделить), а показатель степени у результата оставить таким же как у множителей (или делимого и делителя).

В общем виде на математическом языке эти правила записываются так:
a m × b m = (ab) m
a m ÷ b m = (a/b) m

При делении b не может быть равно 0, то есть второе правило надо дополнить условием b ≠ 0.

Примеры:
2 3 × 3 3 = (2 × 3) 3 = 63 = 36 × 6 = 180 + 36 = 216
6 5 ÷ 3 5 = (6 ÷ 3) 5 = 2 5 = 32

Теперь на этих конкретных примерах докажем, что правила-свойства степеней с одинаковыми показателями верны. Решим данные примеры так, как будто мы не знаем о свойствах степеней:
2 3 × 3 3 = (2 × 2 × 2) × (3 × 3 × 3) = 2 × 2 × 2 × 3 × 3 × 3 = 8 × 27 = 160 + 56 = 216
65 ÷ 35 = (6 × 6 × 6 × 6 × 6) ÷ (3 × 3 × 3 × 3 × 3) == 2 × 2 × 2 × 2 × 2 = 32

Как мы видим, ответы совпали с теми, которые были получены, когда использовались правила. Знание этих правил позволяет упростить вычисления.

Обратите внимание, что выражение 2 × 2 × 2 × 3 × 3 × 3 можно представить в таком виде:
(2 × 3) × (2 × 3) × (2 × 3).

Это выражение в свою очередь есть нечто иное как (2 × 3) 3. то есть 6 3 .

Рассмотренные свойства степеней с одинаковыми показателями могут быть использованы в обратную сторону. Например, сколько будет 18 2 ?
18 2 = (3 × 3 × 2) 2 = 3 2 × 3 2 × 2 2 = 9 × 9 × 4 = 81 × 4 = 320 + 4 = 324

Свойства степеней также используются при решении примеров:
= 2 4 × 3 6 = 2 4 × 3 4 × 3 × 3 = 6 4 × 3 2 = 6 2 × 6 2 × 3 2 = (6 × 6 × 3) 2 = 108 2 = 108 × 108 = 108 (100 + 8) = 10800 + 864 = 11664

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где «a » — любое число, а «m », «n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    T = 3 8 − 4

    Ответ: t = 3 4 = 81
  • Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    • Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
    • Пример. Найти значение выражения, используя свойства степени.
      = = = 2 9 + 2
      2 5
      = 2 11
      2 5
      = 2 11 − 5 = 2 6 = 64

      Важно!

      Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

      Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

      Будьте внимательны!

      Свойство № 3
      Возведение степени в степень

      Запомните!

      При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

      (a n) m = a n · m , где «a » — любое число, а «m », «n » — любые натуральные числа.


      Свойства 4
      Степень произведения

      Запомните!

      При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

      (a · b) n = a n · b n , где «a », «b » — любые рациональные числа; «n » — любое натуральное число.

      • Пример 1.
        (6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
      • Пример 2.
        (−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6

      Важно!

      Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

      (a n · b n)= (a · b) n

      То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

      • Пример. Вычислить.
        2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
      • Пример. Вычислить.
        0,5 16 · 2 16 = (0,5 · 2) 16 = 1

      В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

      Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

      Пример возведения в степень десятичной дроби.

      4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

      Свойства 5
      Степень частного (дроби)

      Запомните!

      Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

      (a: b) n = a n: b n , где «a », «b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

      • Пример. Представить выражение в виде частного степеней.
        (5: 3) 12 = 5 12: 3 12

      Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

    Так, сумма a 3 и b 2 есть a 3 + b 2 .
    Сумма a 3 - b n и h 5 -d 4 есть a 3 - b n + h 5 - d 4 .

    Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

    Так, сумма 2a 2 и 3a 2 равна 5a 2 .

    Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

    Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

    Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

    Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

    Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

    Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

    Или:
    2a 4 - (-6a 4) = 8a 4
    3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
    5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

    Умножение степеней

    Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

    Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

    Или:
    x -3 ⋅ a m = a m x -3
    3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
    a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

    Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
    Выражение примет вид: a 5 b 5 y 3 .

    Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат - это число (переменная) со степенью, равной сумме степеней слагаемых.

    Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

    Здесь 5 - это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

    Так, a n .a m = a m+n .

    Для a n , a берётся как множитель столько раз, сколько равна степень n;

    И a m , берётся как множитель столько раз, сколько равна степень m;

    Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

    Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

    Или:
    4a n ⋅ 2a n = 8a 2n
    b 2 y 3 ⋅ b 4 y = b 6 y 4
    (b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

    Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
    Ответ: x 4 - y 4 .
    Умножьте (x 3 + x - 5) ⋅ (2x 3 + x + 1).

    Это правило справедливо и для чисел, показатели степени которых - отрицательные .

    1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

    2. y -n .y -m = y -n-m .

    3. a -n .a m = a m-n .

    Если a + b умножаются на a - b, результат будет равен a 2 - b 2: то есть

    Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

    Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

    Так, (a - y).(a + y) = a 2 - y 2 .
    (a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4 .
    (a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8 .

    Деление степеней

    Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

    Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

    Или:
    $\frac{9a^3y^4}{-3a^3} = -3y^4$
    $\frac{a^2b + 3a^2}{a^2} = \frac{a^2(b+3)}{a^2} = b + 3$
    $\frac{d\cdot (a - h + y)^3}{(a - h + y)^3} = d$

    Запись a 5 , делённого на a 3 , выглядит как $\frac{a^5}{a^3}$. Но это равно a 2 . В ряде чисел
    a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
    любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

    При делении степеней с одинаковым основанием их показатели вычитаются. .

    Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac{yyy}{yy} = y$.

    И a n+1:a = a n+1-1 = a n . То есть $\frac{aa^n}{a} = a^n$.

    Или:
    y 2m: y m = y m
    8a n+m: 4a m = 2a n
    12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

    Правило также справедливо и для чисел с отрицательными значениями степеней.
    Результат деления a -5 на a -3 , равен a -2 .
    Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.

    h 2:h -1 = h 2+1 = h 3 или $h^2:\frac{1}{h} = h^2.\frac{h}{1} = h^3$

    Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

    Примеры решения примеров с дробями, содержащими числа со степенями

    1. Уменьшите показатели степеней в $\frac{5a^4}{3a^2}$ Ответ: $\frac{5a^2}{3}$.

    2. Уменьшите показатели степеней в $\frac{6x^6}{3x^5}$. Ответ: $\frac{2x}{1}$ или 2x.

    3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
    a 2 .a -4 есть a -2 первый числитель.
    a 3 .a -3 есть a 0 = 1, второй числитель.
    a 3 .a -4 есть a -1 , общий числитель.
    После упрощения: a -2 /a -1 и 1/a -1 .

    4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
    Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

    5. Умножьте (a 3 + b)/b 4 на (a - b)/3.

    6. Умножьте (a 5 + 1)/x 2 на (b 2 - 1)/(x + a).

    7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

    8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

    9. Разделите (h 3 - 1)/d 4 на (d n + 1)/h.

    Каждая арифметическая операция порою становится слишком громоздкой для записи и её стараются упростить. Когда-то так было и с операцией сложения. Людям было необходимо проводить многократное однотипное сложение, например, посчитать стоимость ста персидских ковров, стоимость которого составляет 3 золотые монеты за каждый. 3+3+3+…+3 = 300. Из-за громоздкости было придумано сократить запись до 3 * 100 = 300. Фактически, запись «три умножить на сто» означает, что нужно взять сто троек и сложить между собой. Умножение прижилось, обрело общую популярность. Но мир не стоит на месте, и в средних веках возникла необходимость проводить многократное однотипное умножение. Вспоминается старая индийская загадка о мудреце, попросившем в награду за выполненную работу пшеничные зёрна в следующем количестве: за первую клетку шахматной доски он просил одно зерно, за вторую – два, третью – четыре, пятую – восемь и так далее. Так появилось первое умножение степеней, ведь количество зёрен было равно двойке в степени номера клетки. К примеру, на последней клетке было бы 2*2*2*…*2 = 2^63 зёрен, что равно числу длиной в 18 знаков, в чём, собственно, и кроется смысл загадки.

    Операция возведения в степень прижилась довольно быстро, также быстро возникла необходимость проводить сложение, вычитание, деление и умножение степеней. Последнее и стоит рассмотреть более подробно. Формулы для сложения степеней просты и легко запоминаются. К тому же, очень легко понять, откуда они берутся, если операцию степени заменить умножением. Но сначала следует разобраться в элементарной терминологии. Выражение a^b (читается «а в степени b») означает, что число a следует умножить само на себя b раз, причём «a» называется основанием степени, а «b» - степенным показателем. Если основания степеней одинаковые, то формулы выводятся совсем просто. Конкретный пример: найти значение выражения 2^3 * 2^4. Чтобы знать, что должно получиться, следует перед началом решения узнать ответ на компьютере. Забив данное выражение в любой онлайн-калькулятор, поисковик, набрав "умножение степеней с разными основаниямии одинаковыми" или математический пакет, на выходе получится 128. Теперь распишем данное выражение: 2^3 = 2*2*2, а 2^4 = 2*2*2*2. Получается, что 2^3 * 2^4 = 2*2*2*2*2*2*2 = 2^7 = 2^(3+4) . Выходит, что произведение степеней с одинаковым основанием равно основанию, возведённому в степень, равную сумме двух предыдущих степеней.

    Можно подумать, что это случайность, но нет: любой другой пример сможет лишь подтвердить данное правило. Таким образом, в общем виде формула выглядит следующим образом: a^n * a^m = a^(n+m) . Также существует правило, что любое число в нулевой степени равно единице. Здесь следует вспомнить правило отрицательных степеней: a^(-n) = 1 / a^n. То есть, если 2^3 = 8, то 2^(-3) = 1/8. Используя это правило можно доказать справедливость равенства a^0 = 1: a^0 = a^(n-n) = a^n * a^(-n) = a^(n) * 1/a^(n) , a^(n) можно сократить и остаётся единица. Отсюда выводится и то правило, что частное степеней с одинаковыми основаниями равно этому основанию в степени, равной частному показателя делимого и делителя: a^n: a^m = a^(n-m) . Пример: упростить выражение 2^3 * 2^5 * 2^(-7) *2^0: 2^(-2) . Умножение является коммутативной операцией, следовательно сначала следует произвести сложение показателей умножения: 2^3 * 2^5 * 2^(-7) *2^0 = 2^(3+5-7+0) = 2^1 =2. Далее следует разобраться с делением на отрицательную степень. Необходимо вычесть показатель делителя из показателя делимого: 2^1: 2^(-2) = 2^(1-(-2)) = 2^(1+2) = 2^3 = 8. Оказывается, операция деления на отрицательную степень тождественна операции умножения на аналогичный положительный показатель. Таким образом, окончательный ответ равен 8.

    Существуют примеры, где имеет место не каноническое умножение степеней. Перемножить степени с разными основаниями очень часто бывает гораздо сложнее, а порой и вообще невозможно. Следует привести несколько примеров различных возможных приёмов. Пример: упростить выражение 3^7 * 9^(-2) * 81^3 * 243^(-2) * 729. Очевидно, имеет место умножение степеней с разными основаниями. Но, следует отметить, что все основания являются различными степенями тройки. 9 = 3^2,1 = 3^4,3 = 3^5,9 = 3^6. Используя правило (a^n) ^m = a^(n*m) , следует переписать выражение в более удобном виде: 3^7 * (3^2) ^(-2) * (3^4) ^3 * (3^5) ^(-2) * 3^6 = 3^7 * 3^(-4) * 3^(12) * 3^(-10) * 3^6 = 3^(7-4+12-10+6) = 3^(11) . Ответ: 3^11. В случаях, когда различные основания, на равные показатели работает правило a^n * b^n = (a*b) ^n. Например, 3^3 * 7^3 = 21^3. В остальном, когда различные основания и показатели, произвести полное умножение нельзя. Иногда можно частично упростить или прибегнуть к помощи вычислительной техники.

    
    Top