Сложные органические соединения названия. Основы номенклатуры в органической химии


Лекция № 1

КЛАССИФИКАЦИЯ, НОМЕНКЛАТУРА и изомерия ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

1. Классификация органических соединений.

2. Номенклатура органических соединений.

3. Структурная изомерия.

1. Классификация органических соединений.

Органические соединения классифицируют по двум основным признакам: строению углеродного скелета и функциональным группам.

По строению углеродного скелета различают ациклические, карбоциклические и гетероциклические соединения.

Ациклические соединения – содержат открытую цепь атомов углерода.

Карбоциклические соединения – содержат замкнутую цепь углеродных атомов и подразделяются на алициклические и ароматические. К алициклическим относятся все карбоциклические соединения, кроме ароматических. Ароматические соединения содержат циклогексатриеновый фрагмент (бензольное ядро).

Гетероциклические соединения - содержат циклы, включающие наряду с атомами углерода один или несколько гетероатомов.

По природе функциональных групп органические соединения делят на классы .

Таблица 1. Основные классы органических соединений.

Функциональная группа

Класс соединений

Общая формула

Отсутствует

Углеводороды

F, - Cl, - Br, - I (–Hal)

Галогенпроизводные

Гидроксильная

Спирты и фенолы

Алкоксильная

Простые эфиры

NH2, >NH, >N-

Нитросоединения

Карбонильная

>c=o <="" center="">

>c=o>

Альдегиды и кетоны

Карбоксильная

Карбоновые кислоты

Алкоксикарбонильная

Сложные эфиры

Карбоксамидная

карбоновых кислот

Тиольная

Сульфокислоты

2. Номенклатура органических соединений.

В настоящее время в органической химии общепринятой является систематическая номенклатура, разработаннаяМеждународным союзом чистой и прикладной химии (IUPAC ). Наряду с ней сохранились и используются тривиальная ирациональная номенклатуры.

Тривиальная номенклатура состоит из исторически сложившихся названий, которые не отражают состава и строения вещества. Они являются случайными и отражают природный источник вещества (молочная кислота, мочевина, кофеин), характерные свойства (глицерин, гремучая кислота), способ получения (пировиноградная кислота, серный эфир), имя первооткрывателя (кетон Михлера, углеводород Чичибабина), область применения (аскорбиновая кислота). Преимуществом тривиальных названий является их лаконичность, поэтому употребление некоторых из них разрешено правилами IUPAC.

Систематическая номенклатура является научной и отражает состав, химическое и пространственное строение соединения. Название соединения выражается при помощи сложного слова, составные части которого отражают определенные элементы строения молекулы вещества. В основе правил номенклатуры IUPAC лежат принципы заместительной номенклатуры , согласно которой молекулы соединений рассматриваются как производные углеводородов, в которых атомы водорода замещены на другие атомы или группы атомов. При построении названия в молекуле соединения выделяют следующие структурные элементы.

Родоначальная структура – главная цепь углеродная цепь или циклическая структура в карбо- и гетероциклах.

Углеводородный радикал – остаток формульного обозначения углеводорода со свободными валентностями (см. таблицу 2).

Характеристическая группа – функциональная группа, связанная с родоначальной структурой или входящая в ее состав (см. таблицу 3).

При составлении названия последовательно выполняют следующие правила.

1. Определяют старшую характеристическую группу и указывают ее обозначение в суффиксе (см. таблицу 3).

2. Определяют родоначальную структуру по следующим критериям в порядке падения старшинства: а) содержит старшую характеристическую группу; б) содержит максимальное число характеристических групп; в) содержит максимальное число кратных связей; г) имеет максимальную длину. Родоначальную структуру обозначают в корне названия в соответствии с длиной цепи или размером цикла: С1 – “мет”, С2 – “эт”, С3 – “проп”, С4 – “бут”, С5 и далее – корни греческих числительных.

3. Определяют степень насыщенности и отражают ее в суффиксе: “ан” – нет кратных связей, “ен” – двойная связь, “ин” – тройная связь.

4. Устанавливают остальные заместители (углеводородные радикалы и младшие характеристические группы) и перечисляют их названия в префиксе в алфавитном порядке.

5. Устанавливают умножающие префиксы – “ди”, “три”, “тетра”, указывающие число одинаковых структурных элементов (при перечислении заместителей в алфавитном порядке не учитываются).

6. Проводят нумерацию родоначальной структуры так, чтобы старшая характеристическая группа имела наименьший порядковый номер. Локанты (цифры) ставят перед названием родоначальной структуры, перед префиксами и перед суффиксами.

Таблица 2. Названия алканов и алкильных радикалов, принятые систематической номенклатурой IUPAC.

Название

Алкильный радикал

Название

Изопропил

н-Бутан

н-Бутил

втор-Бутил

Изобутан

Изобутил

трет-Бутил

CH3CH2СН2CH2СН3

н-Пентан

CH3CH2СН2CH2СН2-

н-Пентил

Изопентан

Изопентил

Неопентан

Неопентил

Таблица 3. Названия характеристических групп (перечислены в порядке убывания старшинства).

*Атом углерода, заключенный в скобки, входит в состав родоначальной структуры.

**Алкокси-группы и все следующие за ними перечисляются в префиксе по алфавиту и не имеют порядка старшинства.

Рациональная (радикально-функциональная) номенклатура используется для названий простых моно - и бифункциональных соединений и некоторых классов природных соединений. Основу названия составляет название данного класса соединений или одного из членов гомологического ряда с указанием заместителей. В качестве локантов, как правило, используются греческие буквы.

3. Структурная изомерия.

Изомеры – это вещества, имеющие одинаковый состав и молекулярную массу, но разные физические и химические свойства. Различия в свойствах изомеров обусловлены различиями в их химическом или пространственном строении.

Под химическим строением понимают природу и последовательность связей между атомами в молекуле. Изомеры, молекулы которых отличаются по химическому строению, называют структурными изомерами .

Структурные изомеры могут отличаться:

      по строению углеродного скелета

      по положению кратных связей и функциональных групп

      по типу функциональных групп

1. Изомерия

Понятие «изомеры» введено Берцелиусом в 1830г. Он определил «изомеры» как вещества, имеющие одинаковый состав (молекулярную формулу), но различные свойства. Представление об изомерах Берцелиус ввел после того как установил, что циановая кислота НОСN идентична по составу гремучей или изоциановой кислоте О=С=NН.

Различают два основных вида изомерии: структурную и пространственную (стереоизомерию).

Структурные изомеры отличаются друг от друга порядком связей между атомами в молекуле; стереоизомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

2. Структурная изомерия

Структурная изомерия подразделяется на несколько разновидностей.

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Так, может существовать только один нециклический насыщенный углеводород с тремя атомами С - пропан (I). Углеводородов такого же типа с четырьмя атомами С может быть уже два: н -бутан (II) и изобутан (III), а с пятью атомами С - три: н -пентан (IV), изопентан (V) и неопентан (VI):аммиаком , тогда как 1,3-динитробензол (XI) в реакцию с NH3 не вступает.

В ряду алифатических простых эфиров, сульфидов и аминов существует специальный вид изомерии - метамерия , обусловленная различным положением гетероатома в углеродной цепи. Метамерами являются, например, метилпропиловый (XII) и диэтиловый (XIII) эфиры:

Изомерия непредельных соединений может быть вызвана различным положением кратной связи, как, например, в бутене-1 (XIV) и бутене-2 (XV), в винилуксусной (XVI) и кротоновой (XVII) кислотах:

В большинстве случаев структурные изомеры сочетают признаки изомерии скелета и изомерии положения, содержат различные функциональные группы и принадлежат к разным классам веществ, вследствие чего они отличаются друг от друга значительно больше, чем рассмотренные выше изомеры веществ одного и того же типа. Например, изомерами являются пропилен (XVIII) и циклопропан (XIX), оксид этилена (XX) и ацетальдегид (XXI), ацетон (XXII) и пропионовый альдегид (XXIII), диметиловый эфир (XXIV) и этиловый спирт (XXV), аллен (XXVI) и метилацетилен (XXVII):

Особым видом структурной изомерии является таутомерия (равновесная динамическая изомерия) - существование вещества в двух или более изомерных формах, легко переходящих друг в друга. Так, ацетоуксусный эфир существует в виде равновесной смеси кетонной (XXVIII) и енольной (XXIX) форм:

Лекции по органической химии

Лекция 1

Классификация органических соединений. Номенклатура органических соединений.

Цель лекции: знакомство с классификацией и номенклатурой органических соединений

План:

    Предмет и задачи органической химии. Значение её для фармации.

    Классификация органических соединений.

    Принципы тривиальной и рациональной номенклатуры.

    Принципы номенклатуры ИЮПАК.

    Предмет и задачи органической химии.

Органическая химия – это раздел химии, посвященный изучению строения, способов синтеза и химических превращений углеводородов и их функциональных производных.

Термин «органическая химия » впервые ввел шведский химик Йенс Якоб Берцеллиус в 1807 г.

Благодаря особенностям своего строения органические вещества очень многочисленны. Сегодня их число достигает 10 млн.

В настоящее время состояние органической химии таково, что позволяет научно спланировать и осуществить синтез любых сложных молекул (белков, витаминов, ферментов, лекарственных препаратов и т. д.).

Органическая химия тесно связана с фармацией. Она позволяет осуществлять выделение индивидуальных лекарственных веществ из растительного и животного сырья, синтезирует и проводит очистку лекарственного сырья, определяет структуру вещества и механизм химического действия, позволяет определять подлинность того или иного лекарственного препарата. Достаточно сказать, что 95 % лекарственных средств имеют органическую природу.

    Классификация органических соединений

В классификации принимаются за основу два важнейших признака: строение углеродного скелета и наличие в молекуле функциональных групп.

По строению углеродного скелета органические. соединения делятся на три большие группы.

I Ациклические (алифатические) соединения, имеющие открытую углеродную цепь как неразветвлённую, так и разветвлённую.

К ним относятся:

Алканы СН 3 – СН 2 – СН 2 – СН 3

Алкены СН = СН – СН 2 – СН 3

Алкины СН = С – СН 2 – СН 3

Алкадиены СН 2 = СН – СН = СН 2

II Циклические соединения, которые в свою очередь делятся на карбоциклические и гетероциклические.

Карбоциклические соединения- это соединения в которых углеродная цепь замкнута в цикл (кольцо). Они в свою очередь подразделяются на алициклические и ароматические . Примером алициклических углеводородов является циклогексан, а ароматических – бензол.

Циклогексан Бензол

Гетероциклические соединения (от греческого heteros – другой), содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода, серы. Например:

Родоначальными соединениями в органической химии признаны углеводороды , состоящие только из атомов углерода и водорода. Разнообразные органические соединения можно рассматривать как производные углеводородов, полученные введением в них функциональных групп.

Функциональной группой называют структурный фрагмент молекулы, характерный для данного класса органических соединений и определяющий его химические свойства .

Например, свойства спиртов определяются наличием гидроксогруппы (- ОН ), свойства аминов – аминогруппы (- NH 2 ), карбоновых кислот наличием в молекуле карбоксильной группы (- СООН ) и так далее.

Таблица 1 . Основные классы органических соединений

Название класса

органического соединения

Общая формула

Название функциональной

Галогенопроизвоные

гидроксильная

гидроксильная

Простые эфиры

СН 3 – О – СН 3

алкоксильная

аминогруппа

Нитросоединения

нитрогруппа

Альдегиды

СН 3 – С=О

альдегидная

СН 3 – С - О

карбонильная

Карбоновые кислоты

СН 3 - СООН

карбоксильная

Такая классификация важна потому, что функциональные группы во многом определяют химические свойства данного класса соединений.

Если соединения содержат несколько функциональных групп и они одинаковые, то такие соединения называют полифункциональными (СН 2 ОН – СНОН – СН 2 ОН - глицерин), если молекула содержит разные функциональные группы, то это гетерофункциональное соединение (СН 3 – СН(ОН) - СООН - молочная кислота). Гетерофункциональные соединения можно сразу отнести к нескольким классам соединений.

3. Принципы тривиальной и рациональной номенклатуры.

Номенклатура органических соединений является первым этапом освоения научной терминологии. Номенклатура – это система правил, позволяющих назвать данное соединение.

Исторически первой была тривиальная номенклатура. В названии веществ по этой номенклатуре отражались способы получения вещества или его природные источники. Например, лактоза (молочный сахар) выделена из молока, пальмитиновая кислота выделена из пальмового масла и т. д. Многие соединения до сих пор называются по тривиальной номенклатуре, т.к. они более просты и удобны. Но они требуют запоминания и не отражают строения соединения. Например – муравьиная кислота, глюкоза, лимонная кислота.

С развитием химии появились попытки научного подхода к названию соединений. Появилась рациональная (радикальная) номенклатура. Ее называют радикало-функциональной, т.к. название по этой номенклатуре строится по названию радикала и функциональной группы. Атомы углерода нумеровались буквами греческого алфавита (α, β, γ и т.д.). Первым атомом углерода считался атом углерода, стоящий за атомом углерода функциональной группы.

    Принципы номенклатуры ИЮПАК

Научные принципы номенклатуры были утверждены в 1965 г. международным союзом теоретической и прикладной химии (IUPAC). Отсюда и название (IUPAC- Международный союз теоретической и прикладной химии).

Для пользования этой номенклатурой необходимо знать ряд номенклатурных терминов –

    Органический радикал – это остаток молекулы из которой удален один или несколько атомов водорода, при этом остаются свободными одна или несколько валентностей. Если из молекулы алкана удален один атом водорода, то суффикс –ан замещается на суффикс –ил . Например, СН 4 – метан, а СН 3 – метил.

    Родоначальная структура – составляет основу называемого соединения. Ею, является самая длинная углеродная цепь, содержащая наибольшое количество заместителей и кратных связей или цикл в циклических соединениях. Если соединение содержит цепь и цикл, то за основу выбирают цепь.

    Характеристическая группа – функциональная группа, связанная с родоначальной структурой или частично входящая в её состав

    Заместитель – любой атом или группа атомов, замещающие атом водорода в исходном соединении. Таким образом, заместителем может быть любая функциональная группа или УВ радикал.

Составление названия органического соединения по международной номенклатуре проводят в следующей последовательности:

    Определяют старшую функциональную группу, если она присутствует и родоначальную структуру соединения.

Старшую функциональную группу определяют с учетом старшинства всех функциональных групп. (См. таблицу 2)

    Нумерация родоначальной структуры проводят так, чтобы старшая функциональная группа имела наименьший номер или так, чтобы заместители получили наименьшие номера. В гетероцикллах начало нумерации определяет гетероатом.

    Название строят как сложное слово, состоящее из приставки, корня, суффикса и окончания.

    В состав приставки входят младшие функциональные группы и УВ радикалы в алфавитном порядке с указанием места положения.

    В состав корня входит название главной цепи или цикла.

    Суффикс определяет степень насыщенности: если все связи одинарные –ан, двойная – ен, тройная – ин.

    Окончание определяет старшая функциональная группа

Таблица 2 Порядок старшинства функциональных групп, обозначаемых префиксами и суффиксами

Основная

1. Лузин А. П., Зурабян С. Э., Н. А. Тюкавкина, Органическая химия (учебник для учащихся средних фармацевтическх и медицинских заведений), 2002 г. С.23-34.

Дополнительная

    Егоров А. С., Шацкая К. П. Химия. Пособие – репититор для поступающих в вузы

    Кузьменко Н. Е., Еремин В. В., Попков В. А. Начала химии М., 1998. С. 57-61.

    Райл С. А., Смит К., Уорд Р . Основы органической химии для студентов биологических и медицинских специальностей М.: Мир, 1983.

4. Лекции преподавателей.

3. Номенклатура органических соединений

Номенклатура в химии – это, образно говоря, профессиональный язык химиков. Она, в идеале, точно и ясно должна отображать химическое строение, пространственную структуру веществ и их химические превращения.

Органические вещества многообразны и многочисленны. Однако каждое соединение должно иметь своё название, а названию соединения должно соответствовать лишь одна структурная формула . Ещё в последней четверти XIX в. органические вещества в основном называли по тривиальной (эмпирической) номенклатуре, позже стали использовать рациональные названия. Однако рациональная номенклатура не является официальной и современная научная номенклатура не рекомендует её применять. Поэтому в саамы современных учебниках рациональные названия сохранились лишь для узкого ряда соединений, например алкил - и диалкилацетилены.

В 1919 г. С целью стандартизации химической номенклатуры, химических терминов, атомных масс, способов проведения эксперимента и предоставления полученных результатов был организован Международный союз по теоретической и прикладной химии – ИЮПАК (от англ. International Union of Pure and Appied Chemistry – IUPAC )

После съезда ИЮПАК в Лондоне, который состоялся в 1947 г., большая работа по расширению и исправлению правил была проведена комиссией ИЮПАК по номенклатуре органических соединений. Съезды ИЮПАК в 1957 и 1965 гг. рекомендовали разработанную ею номенклатуру к использованию, и она стала называться номенклатурой ИЮПАК. Правила этой номенклатуры выходили в разные годы отдельными изданиями, а в 1979 г. Были собраны в «Голубой книге», которая представляет собой наиболее полный свод современных правил номенклатуры органических соединений.

3.1 Тривиальная, или эмпирическая номенклатура

Тривиальные, или эмпирические, названия веществ – это случайные названия. Обычно они отражают природный источник, метод получения или какое-нибудь свойство соединения. Например, мочевина содержится в моче, муравьиная кислота – в выделениях муравьёв, щавелевая кислота – в щавеле, молочная кислота – в кислом молоке, яблочная кислота - в яблоке, лимонная кислота - в лимоне, виноградная кислота – в винограде; пировиноградную кислоту и пирогаллол получают пиролизом виноградной и галловой кислот; глицерин, гликоли, глицин или гликокол – вещества имеющие сладкий вкус.

H 2 NCONH 2 – мочевина,

HCOOH – муравьиная кислота,

НООССООН – щавелевая кислота,

СН3СН(ОН)СООН – молочная кислота,

НООССН(ОН)СН2СООН – яблочная кислота,

НОСН2СН(ОН)СН2ОН – глицерин,

НОСН2СН2ОН – этиленгликоль,

H 2 NCH 2 COOH – гликокол, глицин.

3.2 Рациональная номенклатура.

Прежде чем рассматривать основы этой номенклатуры, ознакомимся с несколькими важными в органической химии понятиями. Атомы углерода в цепи могут различаться по числу связей с соседними атомами углерода. Ели число таких связей четыре, то углерод называется четвертичным (четверт.), три – третичным (трет.), две – вторичным (втор.), одна – первичным (перв.).

При отрыве атома углерода от молекулы углеводорода образуется углеводородный радикал. Названия предельных ациклических радикалов получаются заменой суффикса -ан в названии углеводорода на –ил . Исходя из количества связей углерода со свободной валентностью с соседними атомами углерода различают первичные, вторичные, третичные радикалы. Неразветвлённый первичный радикал называют нормальным и обозначают строчной буквой н -, которая пишется через дефис перед общим названием радикала.

Вещества, близкие по строению и очень похожие по химическим свойствам, но различающиеся по молекулярному составу лишь на одну или несколько метиленовых групп CH 2 , называют гомологами. Гомологи образуют гомологический ряд, где каждый последующий гомолог отличается от предыдущего на одну метиленовую группу. Гомологические ряды углеводородов получили своё название от названий первых представителей – родоначальников ряда. Например, предельные углеводороды называются метановыми, а непредельные – этиленовыми или ацетиленовыми. По рациональной номенклатуре все гомологи рассматриваются как вещества, полученные заменой одного или нескольких атомов водорода в родоначальнике ряда на углеводородные радикалы. Поэтому сначала находят метановый углерод или этиленовый или ацетиленовый фрагмент и определяют радикалы, связанные с ними. В ациклическом предельном углеводороде за метановый углерод принимаю прежде всего четвертичный, в его отсутствие – третичный и т. д. сначала перечисляют углеводородные радикалы с множительными префиксами, а затем добавляют название родоначальника ряда.

СН3СН 2СН3 – диметилметан,

СН3С (СН3)2СН2СН(СН3)СН3 – триметилизобутилметан,

СН3СН2СН=СН 2 –этилэтилен,

СН3С≡СН – метилацетилен.

3.3 Научные номенклатуры

Номенклатура ИЮПАК органических соединений представляет собой систему нескольких научных номенклатур и способов названия. Для составления названия вещества в целом используют преимущественно заместительную номенклатуру ИЮПАК, реже – радикально-функциональную. Главная ациклическая цепь, содержащая несколько нетерминальных гетероатомов, гетероциклы могут быть названы по заменительной номенклатуре. В органической химии неуглеродный элемент, кроме водорода, называется гетероэлементом . Кислород, азот , сера, фосфор, кремний – гетероэлементы, наиболее часто встречающиеся в составе органических соединений. Если гетероатом находится в конце ациклической цепи, его называют терминальным , если он внутри этой цепи, то нетерминальным . Если в замкнутой цепи атомов, т. е. в цикле, имеется хотя бы один атом гетероэлемента, то такой цикл называют гетероциклом , а соединение – гетероциклическим .


Для гетероциклов разработан специальный способ названия расширенная система Ганча-Видмана , и названия гетероциклов по этой системе предпочтительны, чем названия по заменительной номенклатуре. Названия полиядерных карбоцилов, содержащих максимальное число некумулированных двойных связей, а также сложных систем, состоящих из карбо - и гетероцикла или нескольких гетероциклов, составляются по методу конденсирования .

3.3.1 Заместительная номенклатура

Заместительная номенклатура рассматривает любое органическое соединение как состоящее из родоночальной структуры и заместителей . Имеется также понятие характерных структурных элементов соединения , к которым относят заместители и типы связей или степень насыщенности. Степень насыщенности родоначальной структуры соединения и углеводородных радикалов передаётся суффиксами –ан (насыщенный, только одинарные связи), -ен (двойная связь), -ин (тройная связь). Если присутствует несколько одинаковых ненасыщенных связей, то используют множительные префиксы; ди-, три-, тетра- , и т. д.., например диен, диин, триен, триин.

Заместители делятся на углеводородные радикалы и характеристические группы. Последние в свою очередь формально разделяются на функциональные группы (ФГ) и нефункциональные группы (НФГ). Для ФГ имеется ряд старшинства:

RnN + H 3- n , COOH , SO 3 H , COOR , COHlg , CONH 2 , CN , CHO , > C = O , OH , SH , OOH , NH 2 .

Для НФГ и радикалов характерны только префиксные названия (в приведенном ниже примере 1: З-метил-5-хлоро-..; в примере 2: 5-бромо-...). Для ФГ характерны два названия: 1) для употребле­ния в суффиксе (суффиксное обозначение или название), когда ФГ является старшей (в примере 3: ОН - старшая ФГ, суффикс­ное обозначение -ол; в примере 4: N Н2 - старшая ФГ, суффиксное название -амин); 2) для использования в префиксе (префиксное обозначение или название), когда ФГ является младшей (в приме­ ре 2: ОН - младшая ФГ, префиксное обозначение гидрокси-; в примере 1: N Н2 - младшая ФГ, префиксное название амино-).

Пример 1:

font-size:9.0pt;line-height:150%; font-family:Verdana">

Местоположения заместителей и ненасыщенных связей в родоначальной структуре указываются цифрами, которые получили н азвание локантов. Расположение локантов подчиняется простому правилу: локанты ставятся перед префиксами, но после суффик сов. Локанты отделяются друг от друга запятыми, а от префикса, суффикса и названия родоначальной структуры - черточками (см. примеры 1-4). Локанты конденсирования двух систем и более заключаются в квадратные скобки; они относятся к исходным компонентам (в примере 3 ), а не к конечной конденсиро­ванной системе. Цифры в квадратных скобках в названиях спира нов, бициклических и полициклических соединений не являются локантами, так как они указывают на число атомов в определенном звене (в примере 4 ), а не на их номера.

Если у одного и того же или у разных атомов родоначальной структуры имеется несколько одинаковых заместителей, то, соби­ рая их вместе, используют умножающие префиксы, например: 2,3,3-три метил-2,4-ди окси-, 2,3-ди оксо-1,5-ди хлоро-, .~ди а- мин-1,3, .-три ол- 1,3,4, .-ди карбоновая-1,4 кислота. Префиксные обозначения заместителей перечисляются в названии соединения в алфавитном порядке, но множительные префиксы не учитываются: СН3С(СН3)2СН(СН3)СН(С l )СН(С l )СООН -4,5,5-триметил-2,3-дихлорогексановая кислота.

В приведенных выше примерах 2-4 атомы углерода в циклах не изображены. Аналогичная запись формул используется также в ациклических системах. Например

Такую же форму записи можно применять и для обозначения углеводородных радикалов. В качестве примера приводятся алкилзамещенные бензолы:


В современной химической литературе углеводородные радиолы обозначаются двумя буквами их английских названий:

CH 3 – Me , C 2 H 5 – Et , н- C 3 H 7 – n - Pr , изо- C 3 H 7 – i - Pr , н- C 4 H 9 – n - Bu , втор.- C 4 H 9 – s - Bu , изо- C 4 H 9 – i - Bu , трет.- C 4 H 9 – t - Bu , C 6 H 5 – Ph , C 6 H 5 CH 2 – Bz .

Заместители бывают также простые (СН3, СН3(СН2)3СН2- , С6Н5, F , С l , J , N Н2, СN, ОН, NO , NO 2 ), составные, состоящие из двух или более простых, и сложные - из простого, с которым свя­ заны составные заместители. Как составные, так и сложные имеют единые префиксные названия, включая множительные приставки ди -, три - и т. д., причем их располагают в алфавитном порядке по первым буквам: д иметиламино-, м етиламино-, х лорометил, д ихлорометил, т рихлорометил, а минокарбонил-(СО N Н2), а лкоксикарбонил- (СОО R ), б ромокарбонил - (ВгСО), 3-г идрокси-2-(т рихлорометил)пропил [-СН2СН(СС l 3 )СН2ОН], 2-(д ихлорометил)-1-(трифторометил)-3,3,3-трихлоропропил [СС l 3 СН(СНС l 2 )СН(С F 3 )-]. Для составных и сложных заместителей, название которых, как правило, заключаются в скобки, используются умножающие префиксы бис-, трис-, тетракис- и т. д., которые при перечислении префиксов в алфавитном порядке не учитываются.

4-(д иметиламино)-2,3,5-трим етил-2,3-бис(т рифторометил)гексановая кислота.

Согласно правилам заместительной номенклатуры, название органического соединения состоит из названия родоначальной структуры, префиксов и суффиксов с соответствующими локантами.

Название соединения

Перфиксы радикалов, младших ФГ, НФГ, гидро, т. е. определяемые префиксы в алфавитном порядке с локантами впереди

Название родоначальной структуры = неотделяемые префиксы + корень + суффикс степени насыщенности

Суффикс старшей ФГ

Префиксы, которые являются интегральной частью названия родоначальной структуры, например цикло - (примеры 2, 4), изо-, а-обозначения элементов (окса-, тиа~, аза-, фосфа-, и т. д., см. пример 4, окса-), название причлененнои структуры по методу конденсирования (бензо-, нафто-, антра-, тиено-, пирано - и т. д., см. пример 3, имидазо-), а также эпокси - и эпитио-, указывающие на присоединение, называются неотделяемыми, в то время как префиксы радикалов, характеристических групп и префикс гидро- - отделяемыми. Сначала отделяемые префиксы располагают в ал­ фавитном порядке, а затем вставляют умножающие префиксы и локанты.

3.3.2 Заменительная номенклатура

Заменительная номенклатура применяется для формирования научных названий гетероциклических систем, а также ациклической родоначальной структуры соединения, со­стоящей из ряда неодинаковых фрагментов, соединенных друг с другом посредством гетероатомов. Основу названия родоначальной структуры по этой номенклатуре составляет название гипотетической открытой или циклической углеродной цепи (гептан или циклопентадиен, см. примеры 1 и 2 далее), которые получаются


заменой гетероатомов на атомы углерода. Причём в ациклической системе на атомы углерода заменяют лишь неконцевые гетероатомы (пример 1). К этому названию по порядку убывания старшинства добавляют неотделимые префиксы, указывающие на природу гетероатомов (а-обозначения элементов) и их локанты (3,6-оксаза + гептан 3,6-оксазагептан в примере 1; 1,3-тиаза + циклопентадиен-2,4 1,3-тиазациклопентадиен-2,4 в примере 2); а-обозначения элементов образуются заменой окончания в их латинском названии на «а». Старшинство гетероэлементов в Периодической системе элементов уменьшается всерху вниз в группах и справа налево в периодах (кислород – самый старший, алюминий – самый младший в этом фрагменте системы), как показано ниже:

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол

(о -ксилол)

1,3-диметилбензол мета -ксилол

(м -ксилол)

1,4-диметилбензол пара -ксилол

(п -ксилол)

винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,

древесный спирт

CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол

(гидроксибензол)

карболовая кислота
1-гидрокси-2-метилбензол орто -крезол

-крезол)

1-гидрокси-3-метилбензол мета -крезол

-крезол)

1-гидрокси-4-метилбензол пара -крезол

(п -крезол)

фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота

(соли и сложные эфиры — формиаты)

(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота

(соли и сложные эфиры — пропионаты)

C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота

(соли и сложные эфиры — пальмитаты)

C 17 H 35 COOH октадекановая кислота стеариновая кислота

(соли и сложные эфиры — стеараты)

пропеновая кислота акриловая кислота

(соли и сложные эфиры — акрилаты)

HOOC-COOH этандиовая кислота щавелевая кислота

(соли и сложные эфиры — оксалаты)

1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,

метиловый эфир мурвьиной кислоты

CH 3 COOCH 3 метилэтаноат метилацетат,

метиловый эфир уксусной кислоты

CH 3 COOC 2 H 5 этилэтаноат этилацетат,

этиловый эфир уксусной кислоты

CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,

метиловый эфир акриловый кислоты

Азотсодержащие соединения
аминобензол,

фениламин

анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,

аминоуксусная кислота

2-аминопропионовая кислота аланин
Название класса соединений Общая формула
Алканы С n H 2 n +2
Алкены, циклоалканы С n H 2 n
Алкины, алкадиены, циклоалкены С n H 2 n -2
Одноатомные спирты, простые эфиры С n H 2n+1 OH
Двухатомные спирты С n H 2n (OH) 2
Трехатомные спирты С n H 2n-1 (OH) 3
Альдегиды (предельные), кетоны С n H 2n+1 CHO
Одноосновные карбоновые кислоты, сложные эфиры С n H 2n+1 COOH
Двухосновные карбоновые кислоты С n H 2n (COOH) 2
Амины С n H 2n+1 NH 2
Нитросоединения С n H 2n+1 NO 2
Аминокислоты С n H 2n NH 2 COOH
Ароматические углеводороды, гомологи бензола С n H 2n-6
Ароматические одноатомные спирты С n H 2n-7 OH
Ароматические двухатомные спирты С n H 2n-8 (OH) 2
Ароматические альдегиды С n H 2n-7 CHO
Ароматические одноосновные кислоты С n H 2n-7 COOH

Алгоритм составления формул изомеров алканов

1. Определите число атомов углерода по корню названия углеводорода.

2. Изобразите схему нормальной углеродной цепи и пронумеруйте в ней атомы углерода.

3. Изобразите схему пронумерованной углеродной цепи изомеров, которых по сравнению с нормальной цепью на один атом углерода меньше, этот атом углерода присоедините во всевозможных положениях к атомам углерода пронумерованной главной цепи, кроме крайних.

4. Составьте схему пронумерованной углеродной цепи изомеров, в которых по сравнению с нормальной цепью на два атома углерода меньше; эти два атома углерода присоедините всевозможных положениях к атомам углерода пронумерованной главной цепи, кроме крайних.

5. Впишите атомы водорода с учетом недостающих единиц валентности у атомов углерода в схемах углеродной цепи (валентность углерода – IV).

6. Количество атомов углерода и водорода в углеродной цепи изомеров не должно меняться.

Алгоритм составления формул углеводородов по их названию

1. Определите число атомов углерода в молекуле по корню названия углеводорода.

2. Изобразите углеродную цепь в соответствии с числом атомов углерода в молекуле.

3. Пронумеруйте углеродную цепь.

4. Установите наличие соответствующей углеродной связи в молекуле по суффиксу названия углеводорода, изобразите эту связь в углеродной цепи.

5. Подставьте радикалы в соответствии с номерами атомов углерода в цепи.

6. Обозначьте черточками недостающие валентности у атомов углерода.

7. Впишите недостающие атомы водорода.

8. Представьте структурную формулу в сокращенной записи.

Названия некоторых органических веществ

Химическая формула Систематическое название вещества Тривиальное название вещества
СH 2 Cl 2 Дихлорметан Хлористый метилен
CHCl 3 Трихлорметан Хлороформ
CCl 4 Тетрахлорметан Четыреххлористый углерод
C 2 H 2 Этин Ацетилен
C 6 H 4 (CH 3) 2 Диметилбензол Ксилол
C 6 H 5 CH 3 Метилбензол Толуол
C 6 H 5 NH 2 Аминобензол Анилин
C 6 H 5 OH Гидроксибензол Фенол, карболовая кислота
C 6 H 2 CH 3 (NO 2) 3 2,4,6-тринитротолуол Тол, тротил
С 6 Н 3 (ОН) 3 1,2,3 - тригидроксибензол Пирогаллол
С 6 Н 4 (ОН) 2 1,3 - дигидроксибензол Резорцин
С 6 Н 4 (ОН) 2 1,2- дигидроксибензол Пирокатехин
С 6 Н 4 (ОН) 2 1,4 - дигидроксибензол Гидрохинон
C 6 H 2 OH(NO 2) 3 2,4,6- тринитрофенол Пикриновая кислота
C 3 H 5 (OH) 3 Пропантриол -1,2,3 Глицерин
C 2 H 4 (OH) 2 Этандиол – 1,2 Этиленгликоль
C 6 H 5 CH 2 OH Фенилметанол Бензиловый спирт
С 6 H 8 (OH) 6 Гексангексаол-1,2,3,4,5,6 Сорбит
C 3 H 6 O Прапанон Ацетон
CH 3 OH Метанол (метиловый спирт) Древесный спирт
СН 2 О Метаналь Формальдегид
С 2 Н 4 О Этаналь Уксусный альдегид, ацетальальдегид
С 3 Н 6 О Пропаналь Пропионовый альдегид
С 3 Н 4 О Пропеналь Акролеин
С 6 Н 5 СОН Бензальдегид Бензойный альдегид
С 4 Н 8 О Бутаналь Масляный альдегид
С 5 Н 10 О Пентаналь Валериановый альдегид
НСООН Метановая кислота Муравьиная кислота(соль - формиат)
СН 3 СООН Этановая кислота Уксусная кислота(соль – ацетат)
С 2 Н 5 СООН Пропановая кислота Пропионовая кислота
С 3 Н 7 СООН Бутановая кислота Масляная кислота
С 4 Н 9 СООН Пентановая кислота Валериановая кислота
С 5 Н 11 СООН Гексановая кислота Капроновая кислота
С 6 Н 13 СООН Гептановая кислота Энантовая кислота
С 7 Н 15 СООН Октановая кислота Каприловая кислота
С 8 Н 17 СООН Нонановая кислота Пеларголовая кислота
НООС - СООН Этандиовая кислота Щавелевая кислота(соль – оксалат)
НООС –СН 2 - СООН Пропандиовая кислота Малоновая кислота
НООС –(СН 2) 2 - СООН Бутандиовая кислота Янтарная кислота
С 17 Н 33 СООН(непред) Октадекеновая кислота Олеиновая кислота
С 15 Н 31 СООН(пред) Гексадекановая кислота Пальмитиновая кислота
С 17 Н 35 СООН(пред) Октадекановая кислота Стеариновая кислота(соль – стеарат)

Top