Нормальное распределение. Непрерывные распределения в MS EXCEL

Случайная величина называется распределенной по нормальному (Гауссовскому) закону с параметрами аи () , если плотность распределения вероятностей имеет вид

Величина, распределенная по нормальному закону, всегда имеет бесчисленное множество возможных значений, поэтому ее удобно изображать графически, с помощью графика плотности распределения. Согласно формуле

вероятность того, что случайная величина примет значение из интервала равна площади под графиком функции на этом интервале (геометрический смысл определенного интеграла). Рассматриваемая функция неотрицательна и непрерывна. График функ­ции имеет вид колокола и называется кривой Гаусса или нормальной кривой.

На рисунке изображено несколько кривых плотности распределения случайной величины, заданной по нормальному закону.

Все кривые имеют одну точку максимума, при удалении от которой вправо и влево кривые убывают. Максимум достигается при и равен .

Кривые симметричны относительно вертикальной прямой, проведенной через наивысшую точку. Площадь подграфика каждой кривой равна 1.

Различие отдельных кривых распределения состоит лишь в том, что суммарная площадь подграфика, одна и та же для всех кривых, различным образом распределена между различными участками. Основная часть площади подграфика любой кривой сосредоточена в непосредственной близости наивероятнейшего значения , а это значение у всех трех кривых разное. При различных значениях и а получаются различные нормальные законы и различные графики плотности функции распределения.

Теоретические исследования показали, что большинство встречающихся на практике случайных величин имеет нормальный закон распределения. По этому закону распределяется скорость газовых молекул, вес новорожденных, размер одежды и обуви населения страны и много других случайных событий физической и биологической природы. Впервые эту закономерность заметил и теоретически обосновал А. Муавр.

При , функция совпадает с функцией , о которой уже шла речь в локальной предельной теореме Муавра–Лапласа. Плотность вероятности нормального распределения легко выражаетсячерез :

При таких значениях параметров нормальный закон называется основным .

Функция распределения для нормированной плотности называется функцией Лапласа и обозначается Φ(х) . Мы также уже встречались с этой функцией.

Функция Лапласа не зависит от конкретных параметров а и σ. Для функции Лапласа, с помощью методов приближенного интегрирования составлены таблицы значений на проме­жутке с разной степенью точности. Очевидно, что функция Лапласа является нечетной, следовательно, нет необходимости помещать в таблицу ее значения при отрицательных .



Для случайной величины, распределенной по нормальному закону с параметрами а и , математическое ожидание и дисперсия вычисляются по формулам: , .Среднее квадратическое отклонение равно .

Вероятность того, что нормально распределенная величина примет значение из интервала , равна

где есть функция Лапласа, введенная в интегральной предельной теореме.

Часто в задачах требуется вычислить вероятность того, что отклонение нормально распределенной случайной величины X от своего математического ожидания по абсолютной величине не превосходит некоторого значения , т.е. вычислить вероятность . Применяя формулу (19.2), имеем:

В заключение приведем одно важное следствие из формулы (19.3). Положим в этой формуле . Тогда , т.е. вероятность того, что абсолютная величина отклонения X от своего математического ожидания не превысит , равна 99,73%. Практически такое событие можно считать достоверным. В этом и состоит сущность правила трех сигм.

Правило трех сигм. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания практически не превосходит утроенного среднего квадратического отклонения.

Нормальный закон распределения вероятностей

Без преувеличения его можно назвать философским законом. Наблюдая за различными объектами и процессами окружающего мира, мы часто сталкиваемся с тем, что чего-то бывает мало, и что бывает норма:


Перед вами принципиальный вид функции плотности нормального распределения вероятностей, и я приветствую вас на этом интереснейшем уроке.

Какие можно привести примеры? Их просто тьма. Это, например, рост, вес людей (и не только), их физическая сила, умственные способности и т.д. Существует «основная масса» (по тому или иному признаку) и существуют отклонения в обе стороны.

Это различные характеристики неодушевленных объектов (те же размеры, вес). Это случайная продолжительность процессов, например, время забега стометровки или превращения смолы в янтарь. Из физики вспомнились молекулы воздуха: среди них есть медленные, есть быстрые, но большинство двигаются со «стандартными» скоростями.

Далее отклоняемся от центра ещё на одно стандартное отклонение и рассчитываем высоту:

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость ! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота , и «залезать» за неё категорически нельзя!

При электронном оформлении решения график легко построить в Экселе, и неожиданно для самого себя я даже записал короткий видеоролик на эту тему. Но сначала поговорим о том, как меняется форма нормальной кривой в зависимости от значений и .

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при функция принимает вид и наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:


Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная ; её функция плотности чётная , и график симметричен относительно оси ординат.

В случае изменения «сигмы» (при постоянном «а») , график «остаётся на месте», но меняет форму. При увеличении он становится более низким и вытянутым, словно осьминог, растягивающий щупальца. И, наоборот, при уменьшении график становится более узким и высоким – получается «удивлённый осьминог». Так, при уменьшении «сигмы» в два раза: предыдущий график сужается и вытягивается вверх в два раза:

Всё в полном соответствии с геометрическими преобразованиями графиков .

Нормальное распределёние с единичным значением «сигма» называется нормированным , а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным . Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа : . Стандартное распределение нашло широкое применение на практике, и очень скоро мы окончательно поймём его предназначение.

Ну а теперь смотрим кино:

Да, совершенно верно – как-то незаслуженно у нас осталась в тени функция распределения вероятностей . Вспоминаем её определение :
– вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем переменная , которая «пробегает» все действительные значения до «плюс» бесконечности.

Внутри интеграла обычно используют другую букву, чтобы не возникало «накладок» с обозначениями, ибо здесь каждому значению ставится в соответствие несобственный интеграл , который равен некоторому числу из интервала .

Почти все значения не поддаются точному расчету, но как мы только что видели, с современными вычислительными мощностями с этим нет никаких трудностей. Так, для функции стандартного распределения соответствующая экселевская функция вообще содержит один аргумент:

=НОРМСТРАСП(z)

Раз, два – и готово:

На чертеже хорошо видно выполнение всех свойств функции распределения , и из технических нюансов здесь следует обратить внимание на горизонтальные асимптоты и точку перегиба .

Теперь вспомним одну из ключевых задач темы, а именно выясним, как найти –вероятность того, что нормальная случайная величина примет значение из интервала . Геометрически эта вероятность равна площади между нормальной кривой и осью абсцисс на соответствующем участке:

но каждый раз вымучивать приближенное значение неразумно, и поэтому здесь рациональнее использовать «лёгкую» формулу :
.

! Вспоминает также , что

Тут можно снова задействовать Эксель, но есть пара весомых «но»: во-первых, он не всегда под рукой, а во-вторых, «готовые» значения , скорее всего, вызовут вопросы у преподавателя. Почему?

Об этом я неоднократно рассказывал ранее: в своё время (и ещё не очень давно) роскошью был обычный калькулятор, и в учебной литературе до сих пор сохранился «ручной» способ решения рассматриваемой задачи. Его суть состоит в том, чтобы стандартизировать значения «альфа» и «бета», то есть свести решение к стандартному распределению:

Примечание : функцию легко получить из общего случая с помощью линейной замены . Тогда и:

и из проведённой замены как раз следует формула перехода от значений произвольного распределения – к соответствующим значениям стандартного распределения.

Зачем это нужно? Дело в том, что значения скрупулезно подсчитаны нашими предками и сведены в специальную таблицу, которая есть во многих книгах по терверу. Но ещё чаще встречается таблица значений , с которой мы уже имели дело в интегральной теореме Лапласа :

Если же в нашем распоряжении есть таблица значений функции Лапласа , то решаем через неё:

Дробные значения традиционно округляем до 4 знаков после запятой, как это сделано в типовой таблице. И для контроля есть Пункт 5 макета .

Напоминаю, что , и во избежание путаницы всегда контролируйте , таблица КАКОЙ функции перед вашими глазами.

Ответ требуется дать в процентах, поэтому рассчитанную вероятность нужно умножить на 100 и снабдить результат содержательным комментарием:

– с перелётом от 5 до 70 м упадёт примерно 15,87% снарядов

Тренируемся самостоятельно:

Пример 3

Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратическим отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1,4 до 1,6 см.

В образце решения и далее я буду использовать функцию Лапласа, как самый распространённый вариант. Кстати, обратите внимание, что согласно формулировке, здесь можно включить концы интервала в рассмотрение. Впрочем, это не критично.

И уже в этом примере нам встретился особый случай – когда интервал симметричен относительно математического ожидания. В такой ситуации его можно записать в виде и, пользуясь нечётностью функции Лапласа, упростить рабочую формулу:


Параметр «дельта» называют отклонением от математического ожидания, и двойное неравенство можно «упаковывать» с помощью модуля :

– вероятность того, что значение случайной величины отклонится от математического ожидания менее чем на .

Хорошо то решение, которое умещается в одну строчку:)
– вероятность того, что диаметр наугад взятого подшипника отличается от 1,5 см не более чем на 0,1 см.

Результат этой задачи получился близким к единице, но хотелось бы ещё бОльшей надежности – а именно, узнать границы, в которых находится диаметр почти всех подшипников. Существует ли какой-нибудь критерий на этот счёт? Существует! На поставленный вопрос отвечает так называемое

правило «трех сигм»

Его суть состоит в том, что практически достоверным является тот факт, что нормально распределённая случайная величина примет значение из промежутка .

И в самом деле, вероятность отклонения от матожидания менее чем на составляет:
или 99,73%

В «пересчёте на подшипники» – это 9973 штуки с диаметром от 1,38 до 1,62 см и всего лишь 27 «некондиционных» экземпляров.

В практических исследованиях правило «трёх сигм» обычно применяют в обратном направлении: если статистически установлено, что почти все значения исследуемой случайной величины укладываются в интервал длиной 6 стандартных отклонений, то появляются веские основания полагать, что эта величина распределена по нормальному закону. Проверка осуществляется с помощью теории статистических гипотез .

Продолжаем решать суровые советские задачи:

Пример 4

Случайная величина ошибки взвешивания распределена по нормальному закону с нулевым математическим ожиданием и стандартным отклонением 3 грамма. Найти вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей по модулю 5 грамм.

Решение очень простое. По условию, и сразу заметим, что при очередном взвешивании (чего-то или кого-то) мы почти 100% получим результат с точностью до 9 грамм. Но в задаче фигурирует более узкое отклонение и по формуле :

– вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей 5 грамм.

Ответ :

Прорешанная задача принципиально отличается от вроде бы похожего Примера 3 урока о равномерном распределении . Там была погрешность округления результатов измерений, здесь же речь идёт о случайной погрешности самих измерений. Такие погрешности возникают в связи с техническими характеристиками самого прибора (диапазон допустимых ошибок, как правило, указывают в его паспорте) , а также по вине экспериментатора – когда мы, например, «на глазок» снимаем показания со стрелки тех же весов.

Помимо прочих, существуют ещё так называемые систематические ошибки измерения. Это уже неслучайные ошибки, которые возникают по причине некорректной настройки или эксплуатации прибора. Так, например, неотрегулированные напольные весы могут стабильно «прибавлять» килограмм, а продавец систематически обвешивать покупателей. Или не систематически ведь можно обсчитать. Однако, в любом случае, случайной такая ошибка не будет, и её матожидание отлично от нуля.

…срочно разрабатываю курс по подготовке продавцов =)

Самостоятельно решаем обратную задачу:

Пример 5

Диаметр валика – случайная нормально распределенная случайная величина, среднее квадратическое отклонение ее равно мм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью попадет длина диаметра валика.

Пункт 5* расчётного макета в помощь. Обратите внимание, что здесь не известно математическое ожидание, но это нисколько не мешает решить поставленную задачу.

И экзаменационное задание, которое я настоятельно рекомендую для закрепления материала:

Пример 6

Нормально распределенная случайная величина задана своими параметрами (математическое ожидание) и (среднее квадратическое отклонение). Требуется:

а) записать плотность вероятности и схематически изобразить ее график;
б) найти вероятность того, что примет значение из интервала ;
в) найти вероятность того, что отклонится по модулю от не более чем на ;
г) применяя правило «трех сигм», найти значения случайной величины .

Такие задачи предлагаются повсеместно, и за годы практики мне их довелось решить сотни и сотни штук. Обязательно попрактикуйтесь в ручном построении чертежа и использовании бумажных таблиц;)

Ну а я разберу пример повышенной сложности:

Пример 7

Плотность распределения вероятностей случайной величины имеет вид . Найти , математическое ожидание , дисперсию , функцию распределения , построить графики плотности и функции распределения, найти .

Решение : прежде всего, обратим внимание, что в условии ничего не сказано о характере случайной величины. Само по себе присутствие экспоненты ещё ничего не значит: это может оказаться, например, показательное или вообще произвольное непрерывное распределение . И поэтому «нормальность» распределения ещё нужно обосновать:

Так как функция определена при любом действительном значении , и её можно привести к виду , то случайная величина распределена по нормальному закону.

Приводим. Для этого выделяем полный квадрат и организуем трёхэтажную дробь :


Обязательно выполняем проверку, возвращая показатель в исходный вид:

, что мы и хотели увидеть.

Таким образом:
– по правилу действий со степенями «отщипываем» . И здесь можно сразу записать очевидные числовые характеристики:

Теперь найдём значение параметра . Поскольку множитель нормального распределения имеет вид и , то:
, откуда выражаем и подставляем в нашу функцию:
, после чего ещё раз пробежимся по записи глазами и убедимся, что полученная функция имеет вид .

Построим график плотности:

и график функции распределения :

Если под рукой нет Экселя и даже обычного калькулятора, то последний график легко строится вручную! В точке функция распределения принимает значение и здесь находится

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и, входящие в плотность распределения являются соответственно математическим ожиданием и среднеквадратическим отклонением случайной величиныХ .

Найдём функцию распределения F (x ) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4) Найдём экстремум функции.

Т.к. при y ’ > 0 при x < m и y ’ < 0 при x > m , то в точке х = т функция имеет максимум, равный
.

5) Функция является симметричной относительно прямой х = а , т.к. разность

(х – а ) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m +  и x = m -  вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно
.

Построим график функции плотности распределения (рис. 5).

Построены графики при т =0 и трёх возможных значениях среднеквадратичного отклонения  = 1,  = 2 и  = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

При а = 0 и  = 1 кривая называется нормированной . Уравнение нормированной кривой:

      Функция Лапласа

Найдём вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Т.к. интеграл
не выражается через элементарные функции, то вводится в рассмотрение функция

,

которая называется функцией Лапласа или интегралом вероятностей .

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

На рис. 6 показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(-х) = - Ф(х);

3) Ф() = 1.

Функцию Лапласа также называют функцией ошибок и обозначают erf x .

Ещё используетсянормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

На рис. 7 показан график нормированной функции Лапласа.

      Правило трёх сигм

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трёх сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины :

Если принять  = 3, то получаем с использованием таблиц значений функции Лапласа:

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трёх сигм .

Не практике считается, что если для какой-либо случайной величины выполняется правило трёх сигм, то эта случайная величина имеет нормальное распределение.

Заключение по лекции:

В лекции мы рассмотрели законы распределения непрерывных величин В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.

В различных отраслях науки и техники, а также метрологической практике закон нормального распределения (или просто нормальный закон) нашел наибольшее применение. Этому закону подчиняются многие случайные непрерывные величины. Широкое применение закона нормального распределения объясняется центральной предельной теоремой. Из этой теоремы следует, что если случайная величина X представляет собой сумму взаимно независимых случайных величин х р х 2 , ..., х, влияние каждой из которых на всю сумму незначительно, то независимо оттого, каким законам распределения подчиняется каждое из слагаемы х п, сама величина X будет иметь распределение вероятностей, близкое к нормальному, и тем точнее, чем больше число слагаемых.

Дифференциальная функция распределения или плотность распределения вероятности случайной непрерывной величины, подчиняющейся нормальному закону, имеет вид:

где х - переменная случайная величина (результат наблюдений); о х, а д - среднее квадратическое отклонение результатов наблюдений случайной составляющей их погрешности; т х - математическое

ожидание; в - основание натуральных логарифмов, е = 2, 71828.

Следует помнить, что о х = а д.

Дифференциальная функция нормального распределения графически выражается в виде колоколообразной кривой (кривая Гаусса), представленной на рис. 5.8.

Функция Ф(А) нормированного нормального распределения (интеграл Гаусса) в табличном виде представлена в приложении А.

Как видно на рис. 5.8, кривая нормального распределения случайной величины х результатов измерений симметрична относительно математического ожидания.

Если х - результаты многократных наблюдений одной и той же детерминированной физической величины, то указанная выше кривая симметрична относительно математического ожидания результатов этих наблюдений.

Как уже говорилось ранее, если в качестве случайной величины принята случайная погрешность А со средним квадратическим отклонением а д, эта кривая симметрична относительно оси ординат (рис. 5.9).

Положение кривой Р х (х) =/(х) относительно начала координат определяется значением математического ожидания. Причем обычно на практике берется не математическое ожидание, а среднее арифметическое результатов многократных наблюдений X.

Форма кривой нормального распределения определяется параметром а. Как было показано ранее, чем меньше а, тем более островершинной становится кривая, а ее ветви сближаются (см. рис. 5.4).

Вероятность попадания результата наблюдения в заданный интервал [х р х 2 ] равна площади под кривой нормального распределения, ограниченной нижней Xj и верхней х 7 границами доверительного интервала (рис. 5.10).

Выразим это математически:

Производя замену переменных и их подстановку, получим

В теории вероятностей и метрологии для определения вероятности попадания результата наблюдений в некоторый интервал применяется так называемая нормированная функция Лапласа Ф(Z) =

= которая табулирована. Условия нормирования

заключаются в том, что значение среднего арифметического результатов измерений X принимается равным нулю, а среднее квадратическое отклонение о = 1. В этом случае параметром является величина

Значения функции Лапласа приведены в приложении Б. Используя функцию Лапласа, можно следующим образом определить вероятность попадания результата наблюдения X в интервал (х, х 2):

Приведенное выражение говорит о том, что вероятность попадания результата наблюдения в заданный интервал [х р х-,] равна разнице значений функции Лапласа в точках верхней и нижней границ доверительного интервала.

При рассмотрении этой формулы следует иметь в виду, что O(-Z) = = -0(Z).

Моменты функции распределения случайной погрешности А, распределенной по нормальному закону:

Интегральная функция нормального распределения, представленная на рис. 5.11, выражается через дифференциальную следующим образом:


Правило трех сигм. На практике достаточно часто требуется оценить вероятность того, что отклонение нормально распределенной величины X по абсолютному значению не превышает определенный размер, который обычно принимается равным положительному числу 8.

Другими словами, требуется найти вероятность того, что осуществляется неравенство Х-а 5.

Это неравенство равносильно следующему: - Ь или (а-Ъ) +5).

Используя правило, что вероятность попадания нормально распределенной случайной величины в заданный интервал равна разнице значений функции Лапласа на границах этого интервала, т.е. Р(а (3) =

= ", получим

При а = 0 получим

Если положить, что 5 = За, получим

Таким образом, вероятность отклонения истинного значения случайной величины X по абсолютному значению будет меньше утроенного значения среднего квадратического отклонения. Это и есть правило трех сигм.

Формулируется оно следующим образом: если случайная величина распределена нормально, то абсолютное значение максимального отклонения результата измерения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Это правило применимо и следующим образом: если распределение случайной величины неизвестно, но условие, указанное в правиле трех сигм, соблюдается, то есть основание предполагать, что изучаемая случайная величина распределена нормально, в противном случае - нет.

Контрольные вопросы

  • 1. Дифференциальная функция распределения результатов измерений и случайной погрешности, подчиняющаяся нормальному закону. Аналитическая зависимость, графический вид, начальный и центральные моменты.
  • 2. Интегральная функция, соответствующая нормальному закону распределения.
  • 3. Правило трех сигм.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Нормальное распределение: теоретические основы

Примерами случайных величин, распределённых по нормальному закону, являются рост человека, масса вылавливаемой рыбы одного вида . Нормальность распределения означает следующее : существуют значения роста человека, массы рыбы одного вида, которые на интуитивном уровне воспринимаются как "нормальные" (а по сути - усреднённые), и они-то в достаточно большой выборке встречаются гораздо чаще, чем отличающиеся в бОльшую или меньшую сторону.

Нормальное распределение вероятностей непрерывной случайной величины (иногда - распределение Гаусса) можно назвать колоколообразным из-за того, что симметричная относительно среднего функция плотности этого распределения очень похожа на разрез колокола (красная кривая на рисунке выше).

Вероятность встретить в выборке те или иные значение равна площади фигуры под кривой и в случае нормального распределения мы видим, что под верхом "колокола", которому соответствуют значения, стремящиеся к среднему, площадь, а значит, вероятность, больше, чем под краями. Таким образом, получаем то же, что уже сказано: вероятность встретить человека "нормального" роста, поймать рыбу "нормальной" массы выше, чем для значений, отличающихся в бОльшую или меньшую сторону. В очень многих случаях практики ошибки измерения распределяются по закону, близкому к нормальному.

Остановимся ещё раз на рисунке в начале урока, на котором представлена функция плотности нормального распределения. График этой функции получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA . На ней столбцы гистограммы представляют собой интервалы значений выборки, распределение которых близко (или, как принято говорить в статистике, незначимо отличаются от) к собственно графику функции плотности нормального распределения, который представляет собой кривую красного цвета. На графике видно, что эта кривая действительно колоколообразная.

Нормальное распределение во многом ценно благодаря тому, что зная только математическое ожидание непрерывной случайной величины и стандартное отклонение, можно вычислить любую вероятность, связанную с этой величиной.

Нормальное распределение имеет ещё и то преимущество, что один из наиболее простых в использовании статистических критериев, используемых для проверки статистических гипотез - критерий Стьюдента - может быть использован только в том случае, когда данные выборки подчиняются нормальному закону распределения.

Функцию плотности нормального распределения непрерывной случайной величины можно найти по формуле:

,

где x - значение изменяющейся величины, - среднее значение, - стандартное отклонение, e =2,71828... - основание натурального логарифма, =3,1416...

Свойства функции плотности нормального распределения

Изменения среднего значения перемещают кривую функции плотности нормального распределения в направлении оси Ox . Если возрастает, кривая перемещается вправо, если уменьшается, то влево.

Если меняется стандартное отклонение, то меняется высота вершины кривой. При увеличении стандартного отклонения вершина кривой находится выше, при уменьшении - ниже.

Вероятность попадания значения нормально распределённой случайной величины в заданный интервал

Уже в этом параграфе начнём решать практические задачи, смысл которых обозначен в заголовке. Разберём, какие возможности для решения задач предоставляет теория. Отправное понятие для вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал - интегральная функция нормального распределения.

Интегральная функция нормального распределения :

.

Однако проблематично получить таблицы для каждой возможной комбинации среднего и стандартного отклонения. Поэтому одним из простых способов вычисления вероятности попадания нормально распределённой случайной величины в заданный интервал является использование таблиц вероятностей для стандартизированного нормального распределения.

Стандартизованным или нормированным называется нормальное распределение , среднее значение которого , а стандартное отклонение .

Функция плотности стандартизованного нормального распределения :

.

Интегральная функция стандартизованного нормального распределения :

.

На рисунке ниже представлена интегральная функция стандартизованного нормального распределения, график которой получен при рассчёте некоторой выборки данных в пакете программных средств STATISTICA . Собственно график представляет собой кривую красного цвета, а значения выборки приближаются к нему.


Для увеличения рисунка можно щёлкнуть по нему левой кнопкой мыши.

Стандартизация случайной величины означает переход от первоначальных единиц, используемых в задании, к стандартизованным единицам. Стандартизация выполняется по формуле

На практике все возможные значения случайной величины часто не известны, поэтому значения среднего и стандартного отклонения точно определить нельзя. Их заменяют средним арифметическим наблюдений и стандартным отклонением s . Величина z выражает отклонения значений случайной величины от среднего арифметического при измерении стандартных отклонений.

Открытый интервал

Таблица вероятностей для стандартизированного нормального распределения, которая есть практически в любой книге по статистике, содержит вероятности того, что имеющая стандартное нормальное распределение случайная величина Z примет значение меньше некоторого числа z . То есть попадёт в открытый интервал от минус бесконечности до z . Например, вероятность того, что величина Z меньше 1,5, равна 0,93319.

Пример 1. Предприятие производит детали, срок службы которых нормально распределён со средним значением 1000 и стандартным отклонением 200 часов.

Для случайно отобранной детали вычислить вероятность того, что её срок службы будет не менее 900 часов.

Решение. Введём первое обозначение:

Искомая вероятность.

Значения случайной величины находятся в открытом интервале. Но мы умеем вычислять вероятность того, что случайная величина примет значение, меньшее заданного, а по условию задачи требуется найти равное или большее заданного. Это другая часть пространства под кривой плотности нормального распределения (колокола). Поэтому, чтобы найти искомую вероятность, нужно из единицы вычесть упомянутую вероятность того, что случайная величина примет значение, меньше заданного 900:

Теперь случайную величину нужно стандартизировать.

Продолжаем вводить обозначения:

z = (X ≤ 900) ;

x = 900 - заданное значение случайной величины;

μ = 1000 - среднее значение;

σ = 200 - стандартное отклонение.

По этим данным условия задачи получаем:

.

По таблицам стандартизированной случайной величине (границе интервала) z = −0,5 соответствует вероятность 0,30854. Вычтем ее из единицы и получим то, что требуется в условии задачи:

Итак, вероятность того, что срок службы детали будет не менее 900 часов, составляет 69%.

Эту вероятность можно получить, используя функцию MS Excel НОРМ.РАСП (значение интегральной величины - 1):

P (X ≥900) = 1 - P (X ≤900) = 1 - НОРМ.РАСП(900; 1000; 200; 1) = 1 - 0,3085 = 0,6915.

О расчётах в MS Excel - в одном из последующих параграфах этого урока.

Пример 2. В некотором городе среднегодовой доход семьи является нормально распределённой случайной величиной со средним значением 300000 и стандартным отклонением 50000. Известно, что доходы 40 % семей меньше величины A . Найти величину A .

Решение. В этой задаче 40 % - ни что иное, как вероятность того, что случайная величина примет значение из открытого интервала, меньшее определённого значения, обозначенного буквой A .

Чтобы найти величину A , сначала составим интегральную функцию:

По условию задачи

μ = 300000 - среднее значение;

σ = 50000 - стандартное отклонение;

x = A - величина, которую нужно найти.

Составляем равенство

.

По статистическим таблицам находим, что вероятность 0,40 соответствует значению границы интервала z = −0,25 .

Поэтому составляем равенство

и находим его решение:

A = 287300 .

Ответ: доходы 40 % семей менее 287300.

Закрытый интервал

Во многих задачах требуется найти вероятность того, что нормально распределённая случайная величина примет значение в интервале от z 1 до z 2 . То есть попадёт в закрытый интервал. Для решения таких задач необходимо найти в таблице вероятности, соответствующие границам интервала, а затем найти разность этих вероятностей. При этом требуется вычитать меньшее значение из большего. Примеры на решения этих распространённых задач - следующие, причём решить их предлагается самостоятельно, а затем можно посмотреть правильные решения и ответы.

Пример 3. Прибыль предприятия за некоторый период - случайная величина, подчинённая нормальному закону распределения со средним значением 0,5 млн. у.е. и стандартным отклонением 0,354. Определить с точностью до двух знаков после запятой вероятность того, что прибыль предприятия составит от 0,4 до 0,6 у.е.

Пример 4. Длина изготавливаемой детали представляет собой случайную величину, распределённую по нормальному закону с параметрами μ =10 и σ =0,071 . Найти с точностью до двух знаков после запятой вероятность брака, если допустимые размеры детали должны быть 10±0,05 .

Подсказка: в этой задаче помимо нахождения вероятности попадания случайной величины в закрытый интервал (вероятность получения небракованной детали) требуется выполнить ещё одно действие.

позволяет определить вероятность того, что стандартизованное значение Z не меньше -z и не больше +z , где z - произвольно выбранное значение стандартизованной случайной величины.

Приближенный метод проверки нормальности распределения

Приближенный метод проверки нормальности распределения значений выборки основан на следующем свойстве нормального распределения: коэффициент асимметрии β 1 и коэффициент эксцесса β 2 равны нулю .

Коэффициент асимметрии β 1 численно характеризует симметрию эмпирического распределения относительно среднего. Если коэффициент асимметрии равен нулю, то среднее арифметрического значение, медиана и мода равны: и кривая плотности распределения симметрична относительно среднего. Если коэффициент асимметрии меньше нуля (β 1 < 0 ), то среднее арифметическое меньше медианы, а медиана, в свою очередь, меньше моды () и кривая сдвинута вправо (по сравнению с нормальным распределением) . Если коэффициент асимметрии больше нуля (β 1 > 0 ), то среднее арифметическое больше медианы, а медиана, в свою очередь, больше моды () и кривая сдвинута влево (по сравнению с нормальным распределением) .

Коэффициент эксцесса β 2 характеризует концентрацию эмпирического распределения вокруг арифметического среднего в направлении оси Oy и степень островершинности кривой плотности распределения. Если коэффициент эксцесса больше нуля, то кривая более вытянута (по сравнению с нормальным распределением) вдоль оси Oy (график более островершинный). Если коэффициент эксцесса меньше нуля, то кривая более сплющена (по сравнению с нормальным распределением) вдоль оси Oy (график более туповершинный).

Коэффициент асимметрии можно вычислить с помощью функции MS Excel СКОС. Если вы проверяете один массив данных, то требуется ввести диапазон данных в одно окошко "Число".


Коэффициент эксцесса можно вычислить с помощью функции MS Excel ЭКСЦЕСС. При проверке одного массива данных также достаточно ввести диапазон данных в одно окошко "Число".


Итак, как мы уже знаем, при нормальном распределении коэффициенты асимметрии и эксцесса равны нулю. Но что, если мы получили коэффициенты асимметрии, равные -0,14, 0,22, 0,43, а коэффициенты эксцесса, равные 0,17, -0,31, 0,55? Вопрос вполне справедливый, так как практически мы имеем дело лишь с приближенными, выборочными значениями асимметрии и эксцесса, которые подвержены некоторому неизбежному, неконтролируемому разбросу. Поэтому нельзя требовать строгого равенства этих коэффициентов нулю, они должны лишь быть достаточно близкими к нулю. Но что значит - достаточно?

Требуется сравнить полученные эмпирические значения с допустимыми значениями. Для этого нужно проверить следующие неравенства (сравнить значения коэффициентов по модулю с критическими значениями - границами области проверки гипотезы).

Для коэффициента асимметрии β 1 .


Top