Движение заряженной частицы в электрическом поле формулы. Движение заряженных частиц в электрическом и магнитном полях

1. В данном вопросе мы ограничимся рассмотрением движения заряженной частицы в однородных постоянных полях.

В магнитном поле сила Лоренца будет иметь только одну магнитную составляющую

которая всегда перпендикулярна траектории движения и поэтому работы не совершает, а только искривляет траекторию, не изменяя величину скорости. Такого рода силы называются гироскопическими.

В общем случае скорость частицы составляет угол с вектором(рис. 3) и ее можно разложить на два вектора (параллельно и перпендикулярно вектору )

где , , а само движение частицы можно представить в виде наложения двух движений с этими скоростями.

Рассмотрим сначала движение частицы со скоростью , параллельной вектору магнитной индукции. В этом случае , и частица движется вдоль силовой линии магнитного поля.

Во втором движении со скоростью сила Лоренца не изменяется по величине и создает нормальное ускорение в плоскости, перпендикулярной вектору . Поэтому траектория такого движения пред-ставляет собой окружность радиуса r в этой плоскости. Условие движения по окружности, записанное на основе второго закона Ньютона,

позволяет найти радиус окружности и угловую скорость вращения частицы

которые называются циклотронным радиусом и циклотронной частотой.

Циклотронный радиус пропорционален импульсу частицы и обратно пропорционален величине ее заряда и магнитной индукции. Циклотронная частота обратно пропорциональна массе частицы и пропорциональна ее заряду и магнитной индукции.

Направления вращения частиц с положительным и отрицательным зарядом взаимно противоположны из-за различия в направлениях силы Лоренца (рис. 2). В векторной форме циклотронную частоту можно записать в виде формулы

Для положительно заряженной частицы направление угловой скорости противоположно направлению вектора , для отрицательно заряженной частицы – совпадает с вектором .

2. В общем случае, когда частица участвует во вращательном движении вокруг направления вектора и в поступательном параллельно силовой линии, результирующее движение частицы будет происходить по винтовой линии. Для положительно заряженных частиц винтовая линия соответствует левому винту, для отрицательно заряженных – правому (рис. 4). Если векторы и направлены противоположно друг другу, то наоборот.

Данное движение используется в системах, фокусирующих электронный пучок в электронно-лучевых трубках. Дело в том, что шаг винтовой линии, определяемый произведением и периода обращения ,

для электронов, вылетающих из электронной пушки под разными углами к оси пучка, не зависит от угла из-за его малости ().


Поэтому все электроны, вылетевшие из электронной пушки под небольшими, но разными углами соберутся в одной точке через период обращения. Шаг винтовой линии можно изменять, варьируя величину магнитной индукции, что позволяет осуществлять фокусировку электронного луча на экране электронно-лучевой трубки.

Выводы.

1) Сила, действующая на заряженную частицу со стороны магнитного поля, работы не совершает. Она вызывает вращательное движение частиц вокруг направления вектора магнитной индукции с угловой скоростью .

2) В общем случае заряженная частица движется по винтовой линии.

3. Магнитное поле двигающегося заряда

1. Пусть заряженная частица движется со скоростью относительно лабораторной системы отсчета K . В системе , которая движется вместе с частицей, магнитное поле отсутствует (), а электрическое поле описывается формулой

Это обычное электростатическое поле неподвижного точечного заряда.

В неподвижной системе отсчета , в соответствии с преобразованиями (5), (6), находим

Отсюда следует, что при медленных движениях заряженная частица создает в окружающем пространстве электрическое поле такое же, как неподвижная и магнитное с индукцией

При этом радиус-вектор проводится от заряда в точку наблюдения.

Проанализируем данное выражение. Величина вектора магнитной индукции

зависит обратно пропорционально квадрату расстояния от заряда до рассматриваемой точки поля, прямо пропорционально величине заряда и его скорости. Но пространственное распределение магнитной индукции вокруг заряда сложнее, чем для электрического поля.

В формулу магнитной индукции входит синус угла между направлениями скорости и радиус-вектора , проведенного от заряда в точку наблюдения (рис. 5).

Магнитная индукция обращается в нуль на линии, проходящей через заряд параллельно вектору скорости (), и максимальна в плоскости, проходящей через заряд перпендикулярно вектору ().

Направление вектора магнитной индукции перпендикулярно вектору скорости и радиус-вектору (рис. 5).

Если, сохраняя угол a и длину вектора, повернуть радиус-вектор вокруг вектора скорости, то его конец опишет окружность. В каждой точке этой окружности вектор будет направлен по касательной к ней. Следовательно, такая окружность будет являться линией вектора (силовой линией магнитного поля).

Опыт показывает, что для магнитного поля выполняется принцип суперпозиции полей

Магнитная индукция результирующего поля в некоторой точке равна векторной сумме магнитных индукций полей, создаваемых различными источниками в этой точке.

2. Рассмотрим теперь магнитное поле, создаваемое в произвольной точке бесконечно малым отрезком тонкого проводника длины , по которому идет ток силой I .

Величина называется элементом тока. Направление вектора совпадает с направлением тока. Так как сила тока по определению , где S является площадью поперечного сечения проводника, то элемент тока можно выразить через плотность тока , где является объемом выделенного участка проводника. Здесь учтено, что векторы и совпадают по направлению.

Все носители заряда, находящиеся в этом элементе тока, движутся упорядоченно со средней скоростью и создают в данной точке пространства одинаковую магнитную индукцию. Поэтому результирующую магнитную индукцию, создаваемую всеми носителями заряда в произвольной точке, можем получить, умножив число носителей в элементе тока , где n – концентрация носителей заряда в проводнике, на магнитную индукцию , создаваемую одним носителем в этой точке

Здесь плотность тока выражена через среднюю скорость упорядоченного движения носителей заряда. Радиус–вектор проводится от элемента тока в точку наблюдения.

Полученное выражение называется законом Био-Савара-Лапласа. Оно позволяет рассчитать магнитное поле любой системы проводников, используя принцип суперпозиции

Штрихованные переменные относятся к точке интегрирования.

Сравнение формул (8) и (9) показывает, что конфигурация и распределение в пространстве магнитных полей элемента тока и движущегося заряда идентичны (рис. 6). Величина вектора магнитной индукции, создаваемого элементом тока, пропорциональна величине элемента тока, синусу угла между направлением тока и направлением на точку наблюдения и обратно пропорциональна квадрату расстояния от источника до точки наблюдения

Элемент тока создает максимальную магнитную индукцию в плоскости, перпендикулярной элементу тока, и не создает на прямой, проходящей через элемент тока, параллельно вектору . Линии вектора напряженности – суть окружности вокруг этой прямой.

Выводы.

1) Магнитное поле движущегося заряда является следствием движения заряженной частицы и ее электрического поля.

2) Магнитное поле элемента тока и движущегося заряда имеют одинаковое распределение силовой характеристики в пространстве. Это обусловлено тем, что электрический ток представляет собой упорядоченное движение заряженных частиц.

3) Элемент тока и движущийся заряд создают максимальную магнитную индукцию в плоскости, перпендикулярной направлению движения зарядов. Силовые линии в обеих случаях представляют собой окружности, перпендикулярные касательной к траектории движения. Магнитное поле не создается на прямой, касательной к траектории движения зарядов.

4) Магнитная индукция обратно пропорциональна квадрату расстояния от заряда до точки наблюдения. Это обусловлено распределением в пространстве электрического поля заряженной частицы и преобразованием его в магнитное поле при движении.

Если частица, обладающая зарядом е, движется в пространстве, где имеется электрическое поле с напряжённостью E то на неё действует сила eE. Если, кроме электрического, имеется магнитное поле, то на частицу действует ещё сила Лоренца, равная e , где u - скорость движения частицы относительно поля, B - магнитная индукция. Поэтому согласно второму закону Ньютона уравнение движения частиц имеет вид:

Написанное векторное уравнение распадается на три скалярных уравнения, каждое из которых описывает движение вдоль соответствующей координатной оси.

В дальнейшем мы будем интересоваться только некоторыми частными случаями движения. Предположим, что заряженные частицы, двигавшиеся первоначально вдоль оси Х со скоростью попадают в электрическое поле плоского конденсатора.

Если зазор между пластинами мал по сравнению с их длиной, то краевыми эффектами можно пренебречь и считать электрическое поле между пластинами однородным. Направляя ось Y параллельно полю, мы имеем: . Так как магнитного поля нет, то. В рассматриваемом случае на заряженные частицы действует только сила со стороны электрического поля, которая при выбранном направлении координатных осей целиком направлена по оси Y. Поэтому траектория движения частиц лежит в плоскости XY и уравнения движения принимают вид:

Движение частиц в этом случае происходит под действием постоянной силы и подобно движению горизонтально брошенного тела в поле тяжести. Поэтому ясно без дальнейших расчетов, что частицы будут двигаться по параболам.

Вычислим угол , на который отклонится пучок частиц после прохождения через конденсатор. Интегрируя первое из уравнений (3.2), находим:

Интеграция второго уравнения даёт:

Так как при t=0 (момент вступления частицы в конденсатор) u(y)=0, то c=0, и поэтому

Отсюда получаем для угла отклонения:

Мы видим, что отклонение пучка существенно зависит от величины удельного заряда частиц e/m

§ 72. Движение заряженной частицы в однородном магнитном поле

Представим себе заряд , движущийся в однородноммагнитном поле со скоростью v, перпендикулярной к В. Магнитная сила сообщает заряду перпендикулярное к скорости ускорение

(см. формулу (43.3); угол между v и В прямой). Это ускорение изменяет лишь направление скорости, величина же скорости остается неизменной. Следовательно, и ускорение (72.1) будет постоянным по величине. При этих условиях заряженная частица движется равномерно по окружности, радиус которой определяется соотношением Подставив сюда значение (72.1) дляи решив получившееся уравнение относительно R, получим

Итак, в случае, когда заряженная частица движется в однородном магнитном поле, перпендикулярном к плоскости, в которой происходит движение, траектория частицы является окружностью. Радиус этой окружностизависит от скорости частицы, магнитной индукции поля и отношения заряда частицы к ее массе. Отношениеназывается удельным зарядом.

Найдем время Т, затрачиваемое частицей на один оборот. Для этого разделим длину окружности на скорость частицы v. В результате получим

Из (72.3) следует, что период обращения частицы не зависит от ее скорости, он определяется только удельным зарядом частицы и магнитной индукцией поля.

Выясним характер движения заряженной частицы в случае, когда ее скорость образует с направлением однородного магнитного поля угол а, отличный от прямого. Разложим вектор v на две составляющие; - перпендикулярную к В и- параллельную В (рис. 72.1). Модули этих составляющих равны

Магнитная сила имеет модуль

и лежит в плоскости, перпендикулярной к В. Создаваемое этой силой ускорение является для составляющей нормальным.

Составляющая магнитной силы в направлении В равна нулю; поэтому повлиять на величину эта сила не может. Таким образом, движение частицы можно представить как наложение двух движений: 1) перемещения вдоль направления В с постоянной скоростьюи 2) равномерного движения поокружности в плоскости, перпендикулярной к вектору В. Радиус окружности определяется формулой (72.2) с заменой v на .Траектория движения представляет собой винтовую линию, ось которой совпадает с направлением В (рис. 72.2). Шаг линии можно найти, умноживна определяемый формулой (72.3) период обращения Т:

Направление, в котором закручивается траектория, зависит от знака заряда частицы. Если заряд положителен, траектория закручивается против часовой стрелки. Траектория, по которой движется отрицательно заряженная частица, закручивается по часовой стрелке (предполагается, что мы смотрим на траекторию вдоль направления В; частица при этом летит от нас, если и на нас, если).

16. Движение заряженных частиц в электромагнитном поле. Применение электронных пучков в науке и технике: электронная и ионная оптика, электронный микроскоп. Ускорители заряженных частиц.

Введём понятие элементарной частицы как объекта , механическое состояние которого полностью описывается заданием трех координат и трех компонент скорости его движения как целого. Изучению взаимодействий элементарных частиц с э.м. полем предпошлем некоторые общие соображения, относящиеся к понятию “частицы” в релятивистской механике.

Взаимодействие частиц друг с другом описывается (и описывалось до теории относительности) с помощью понятия силового поля. Каждая частица создает вокруг себя поле. На всякую другую частицу, находящуюся в этом поле, действует сила. Это касается как заряженных частиц, взаимодействующих с э.м. полем, так и не имеющих заряда массивных частиц, находящихся в гравитационном поле.

В классической механике поле являлось лишь некоторым способом описания взаимодействия частиц как физического явления . Положение вещей существенным образом меняется в теории относительности из-за конечной скорости распространения поля. Силы, действующие в данный момент на частицу, определяются их расположением в предшествующее время . Изменение положения одной из частиц отражается на других частицах лишь спустя некоторый промежуток времени. Поле становится физической реальностью, через посредство которой осуществляется взаимодействие частиц . Мы не можем говорить о непосредственном взаимодействии частиц, находящихся на расстоянии друг от друга. Взаимодействие может происходить в каждый момент лишь между соседними точками пространства (близкодействие). Поэтому можно говорить о взаимодействии частицы с полем и о последующем взаимодействии поля с другой частицей .

В классической механике можно ввести понятие абсолютно твердого тела , которое ни при каких условиях не может быть деформировано. Однако в невозможности существования абсолютно твердого тела легко убедиться с помощью следующего рассуждения, основанного на теории относительности.

Пусть твердое тело внешним воздействием в какой-нибудь одной его точке приводится в движение. Если бы тело было абсолютно твердым , то все его точки должны были бы прийти в движение одновременно с той, которая подверглась воздействию. (В противном случае тело должно было бы деформироваться). Теория относительности, однако, делает это невозможным, так как воздействие от данной точки передается к остальным с конечной скоростью, а потому все точки тела не могут одновременно начать двигаться. Поэтому под абсолютно твердым телом следует подразумевать тело, все размеры которого остаются неизменными в системе отсчета, где оно покоится.

Из сказанного выше вытекают определенные выводы, относящиеся к рассмотрению элементарных частиц . Очевидно, что в релятивистской механике частицам, которые мы рассматриваем как элементарные , нельзя приписывать конечных размеров. Другими словами, в пределах строгой специальной теории относительности элементарные частицы не должны иметь конечных размеров и, следовательно, должны рассматриваться как точечные.

17. Собственные электромагнитные колебания. Дифференциальное уравнение собственных электромагнитных колебаний и его решение.

Электромагнитными колебаниями называются периодические изменения напряженности Е ииндукции В.

Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.

В неограниченном пространстве или в системах с потерями энергии(диссипативных) возможны собственные Э. к. с непрерывным спектром частот.

18. Затухающие электромагнитные колебания. Дифференциальное уравнение затухающих электромагнитных колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.

лектромагнитные затухающие колебания возникают в электромагнитной колебательной систему , называемой LCR – контур (Рисунок 3.3).

Рисунок 3.3.

Дифференциальное уравнение получим с помощью второго закона Кирхгофа для замкнутого LCR – контура: сумма падений напряжения на активном сопротивлении (R) и конденсаторе (С) равна ЭДС индукции, развиваемой в цепи контура:

коэффициент затухания

Это дифференциальное уравнение, описывающее колебания заряда конденсатора. Введем обозначения:

Величину β также как и в случае механических колебаний называют коэффициентом затухания , а ω 0 – собственной циклической частотой колебаний.

С введенными обозначениями уравнение (3.45) примет вид

Уравнение (3.47) полностью совпадает с дифференциальным уравнением гармонического осциллятора с вязким трением (формула (4.19) из раздела "Физические основы механики"). Решение этого уравнения описывает затухающие колебания вида

q(t) = q 0 e -bt cos(wt + j) (3.48)

где q 0 – начальный заряд конденсатора, ω = – циклическая частота колебаний, φ – начальная фаза колебаний. На рис. 3.17 показан вид функции q(t). Такой же вид имеет и зависимость напряжения на конденсаторе от времени, так как U C = q/C.

ДЕКРЕМЕНТ ЗАТУХАНИЯ

(от лат. decrementum - уменьшение, убыль) (логарифмический декремент затухания) - количественнаяхарактеристика быстроты затухания колебаний в линейной системе; представляет собой натуральныйлогарифм отношения двух последующих максимальных отклонений колеблющейся величины в одну и ту жесторону. T. к. в линейной системе колеблющаяся величина изменяется по закону (где постоянная величина- коэф. затухания) и два последующих наиб. отклонения в одну сторону X 1 и X 2 (условно наз. "амплитудами" колебаний) разделены промежутком времени (условно наз. "периодом" колебаний), то, а Д. з..

Так, напр., для механич. колебат. системы, состоящей из массы т, удерживаемой в положении равновесияпружиной с коэф. упругости k и испытывающей трение силой F T , пропорциональной скорости v (F Т =-bv, гдеb - коэф. пропорциональности), Д. з.

При малом затухании . Аналогично для электрич. контура, состоящего изиндуктивностиL , активного сопротивления R и ёмкости С, Д. з.

.

При малом затухании .

Для нелинейных систем закон затухания колебаний отличен от закона , т. е. отношение двухпоследующих "амплитуд" (и логарифм этого отношения) не остаётся постоянным; поэтому Д. з. не имееттакого определ. смысла, как для систем линейных.

Добро́тность - параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Обозначается символом от англ. quality factor .

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.

19. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных электромагнитных колебаний и его решение. Резонанс.

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Чтобы в реальной колебательной системе осуществлять незатухающие колебания, надо компенсировать каким-либо потери энергии. Такая компенсация возможна, если использовать какой-либо периодически действующего фактора X(t), который изменяется по гармоническому закону: При рассмотрении механических колебаний, то роль X(t) играет внешняя вынуждающая сила (1) С учетом (1) закон движения для пружинного маятника (формула (9) предыдущего раздела) запишется как Используя формулу для циклической частоты свободных незатухающих колебаний прижинного маятника и (10) предыдущего раздела, получим уравнение (2) При рассмотрении электрического колебательный контура роль X(t) играет подводимая к контуру внешняя соответсвующим образом периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение (3) Тогда дифференциальное уравнение колебаний заряда Q в простейшем контуре, используя (3), можно записать как Зная формулу циклической частоты свободных колебаний колебательного контура и формулу предыдущего раздела (11), придем к дифференциальному уравнению (4) Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями . Уравнения (2) и (4) приведем к линейному неоднородному дифференциальному уравнению (5) причем далее мы будем применять его решение для вынужденных колебаний в зависимости от конкретного случая (x 0 если механические колебания равно F 0 /m, в случае электромагнитных колебаний - U m /L). Решение уравнения (5) будет равно (как известно из курса дифференциальных уравнений) сумме общего решения (5) однородного уравнения (1) и частного решения неоднородного уравнения. Частное решение ищем в комплексной форме. Заменим правую часть уравнения (5) на комплексную переменную х 0 e iωt: (6) Частное решение данного уравнения будем искать в виде Подставляя выражение для s и его производных (и) в выражение (6), найдем (7) Поскольку это равенство должно быть верным для всех моментов времени, то время t из него должно исключаться. Значит η=ω. Учитывая это, из формулы (7) найдем величину s 0 и умножим ее числитель и знаменатель на (ω 0 2 - ω 2 - 2iδω) Это комплексное число представим в экспоненциальной форме: где (8) (9) Значит, решение уравнения (6) в комплексной форме будет иметь вид Его вещественная часть, которая является решением уравнения (5), равна (10) где А и φ определяются соответственно формулами (8) и (9). Следовательно, частное решение неоднородного уравнения (5) равно (11) Решение уравнения (5) есть сумма общего решения однородного уравнения (12) и частного решения уравнения (11). Слагаемое (12) играет значительную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, которое определяется равенством (8). Графически вынужденные колебания изображены на рис. 1. Значит, в установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими; амплитуда и фаза колебаний, которые определяются уравнениями (8) и (9), также зависят от ω .

Рис.1

Запишем выражения (10), (8) и (9) для электромагнитных колебаний, учитывая, что ω 0 2 = 1/(LC) и δ = R/(2L) : (13) Продифференцировав Q=Q m cos(ωt–α) по t, получим силу тока в контуре при установившихся колебаниях: (14) где (15) Уравнение (14) может быть записано как где φ = α – π/2 - сдвиг по фазе между током и приложенным напряжением (см. (3)). В соответствии с уравнением (13) (16) Из (16) следует, что ток отстает по фазе от напряжения (φ>0), если ωL>1/(ωС), и опережает напряжение (φ<0), если ωL<1/(ωС). Выражения (15) и (16) можно также вывести с помощью векторной диаграммы. Это будет осуществлено далее для переменных токов.

Резона́нс (фр. resonance , от лат. resono «откликаюсь») - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частотысобственных колебаний с частотой колебаний вынуждающей силы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с некоторой другой частотой, определяемой из параметров колебательной системы, таких как внутренняя (собственная) частота, коэффициент вязкости и т. п. Обычно резонансная частота не сильно отличается от собственной нормальной, но далеко не во всех случаях можно говорить об их совпадении.

20. Электромагнитные волны. Энергия электромагнитной волны. Плотность потока энергии. Вектор Умова-Пойнтинга. Интенсивность волны.

ЭЛЕКТРОМАГНИ́ТНЫЕ ВО́ЛНЫ, электромагнитные колебания, распространяющиеся в пространстве сконечной скоростью, зависящей от свойств среды. Электромагнитной волной называютраспространяющееся электромагнитное поле (см . ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ).

Ознакомьтесь с теорией в конспекте и учебнике (Савельев, т. 2, § 5, § 73). Запустите программу. Выберите «Электричество и магнетизм» и «Движение заряда в электрическом поле». Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Необходимое запишите в свой конспект. (Если вы забыли, как работать с системой компьютерного моделирования, прочитайте ВВЕДЕНИЕ с. 5 еще раз.)

ЦЕЛЬ РАБОТЫ:

* Знакомство с моделью процесса движения заряда в однородном электрическом поле.

* Экспериментальное исследование закономерностей движения точечного заряда в однородном электрическом поле.

* Экспериментальное определение величины удельного заряда частицы.

КРАТКАЯ ТЕОРИЯ:

Движение заряженных частиц в электрическом поле широко используется в современных электронных приборах, в частности, в электронно-лучевых трубках с электростатической системой отклонения электронного пучка.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД есть величина, характеризующая способность объекта создавать электрическое поле и взаимодействовать с электрическим полем.

ТОЧЕЧНЫЙ ЗАРЯД – это абстрактный объект (модель), имеющий вид материальной точки, несущей электрический заряд (заряженная МТ).

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ – это то, что существует в области пространства, в которой на заряженный объект действует сила, называемая электрической.

ОСНОВНЫМИ СВОЙСТВАМИ заряда являются:

· аддитивность (суммируемость);

· инвариантность (одинаковость во всех инерциальных системах отсчета);

· дискретность (наличие элементарного заряда, обозначаемого е , и кратность любого заряда этому элементарному: q = Ne , где N - любое целое положительное или отрицательное число);

· подчинение закону сохранения заряда (суммарный заряд электрически изолированной системы, через границы которой не могут проникать заряженные частицы, сохраняется);

· наличие положительных и отрицательных зарядов (заряд – величина алгебраическая).

ЗАКОН КУЛОНА определяет силу взаимодействия двух точечных зарядов: , где – единичный вектор, направленный от первого заряда q 1 ко второму q 2 .

НАПРЯЖЕННОСТЬЮ называется векторная характеристика поля , численно равная отношению силы , действующей на точечный заряд, к величине q этого заряда: . Если задана напряженность электрического поля, тогда сила, действующая на заряд, будет определяться формулой .

ОДНОРОДНЫМ называется поле, напряженность которого во всех точках одинакова как по величине, так и по направлению. Сила, действующая на заряженную частицу в однородном поле, везде одинакова, поэтому неизменным будет и ускорение частицы, определяемое вторым законом Ньютона (при малых скоростях движения V « c , где с – скорость света в вакууме): = const. Тогда Y = , и

V Y = , где Y – смещение частицы по вертикали и V Y – вертикальная компонента скорости в момент времени, когда частица вылетает из конденсатора.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ

Закройте окно теории. Внимательно рассмотрите рисунок, найдите все регуляторы и другие основные элементы.

Зарисуйте поле эксперимента и траекторию движения частицы. Нажав кнопку «Старт», наблюдайте на экране движение частицы.

Цель работы:

    изучить движение заряженных частиц в электрическом и магнитных полях.

    определить удельный заряд электрона.

В электрическом поле на заряженную частицу, например, электрон, действует сила, пропорциональная величине заряда e и направленности поля Е

Под действием этой силы электрон, имеющий отрицательный заряд, перемещается в направлении, обратном направлению вектора (рис 1 a)

Пусть между плоскопараллельными пластинами приложена некоторая разность потенциалов U. Между пластинами создаётся однородное электрическое поле, напряжённость которого равна (2), где d – расстояние между пластинами.

Рассмотрим траекторию электрона, влетающего в однородное электрическое поле с некоторой скоростью (рис 1 б) .

Горизонтальная составляющая силы равна нулю, поэтому и составляющая скорости электрона остаётся постоянной и равна . Следовательно координата Х электрона определяется как

В вертикальном направлении под действием силы электрону сообщается некоторое ускорение , которое согласно второму закону Ньютона равно

(4)

Следовательно за время электрон приобретает вертикальную составляющую скорости (5)

Откуда .

Изменение координаты У электрона от времени получим, проинтегрировав последнее выражение:

(6)

Подставим значение t из (3) в (6) и получим уравнение движения электрона У (Х)

(7)

Выражение (7) представляет собой уравнение параболы.

Если длина пластин равна , то за время пролёта между пластинами электрон приобретает горизонтальную составляющую

(8)

из (рис 1 б) следует, что тангенс угла отклонения электрона равен

Таким образом, смещение электрона, как и любой другой заряженной частицы, в электрическом поле пропорционально напряжённости электрического поля и зависит от величины удельного заряда частицы е/m.

Движение заряженных частиц в магнитном поле.

Рассмотрим теперь траекторию электрона, влетающего в однородное магнитное поле со скоростью (рис.2)

Магнитное поле воздействует на электрон с силой F л, величина которой определяется соотношением Лоренца

(10)

или в скалярном виде

(11)

где В – индукция магнитного поля;

 - угол между векторами и . Направление силы Лоренца определяется по правилу левой руки с учётом знака заряда частицы.

Отметим, что сила, действующая на электрон, всегда перпендикулярна вектору скорости и, следовательно, является центростремительной силой. В однородном магнитном поле под действием центростремительной силы электрон будет двигаться по окружности радиуса R. Если электрон движется прямолинейно вдоль силовых линий магнитного поля, т.е. =0, то сила Лоренца F л равна нулю и электрон проходит магнитное поле, не меняя направления движения. Если вектор скорости перпендикулярен вектору , то сила действия магнитного поля на электрон максимальна

Так как сила Лоренца является центростремительной силой, то можно записать: , откуда радиус окружности, по которой движется электрон, равен:

Более сложную траекторию описывает электрон, влетающий в магнитное поле со скоростью под некоторым углом  к вектору (рис.3). В этом случае скорость электрона имеет нормальную и тангенциальную составляющие. Первая из них вызвана действием силы Лоренца, вторая обусловлена движением электрона по инерции. В результате электрон движется по цилиндрической спирали. Период его обращения равен (14) , а частота (15). Подставим значение R из (13) в (15):

Из последнего выражения следует, что частота обращения электрона не зависит ни от величины, ни от направления его начальной скорости и определяется только величинами удельного заряда и магнитного поля. Это обстоятельство используется для фокусировки электронных пучков в электронно-лучевых приборах. Действительно, если в магнитном поле попадает пучок электронов, содержащий частицы с различными скоростями (рис.4), то все они опишут спираль разного радиуса, но встретятся в одной и той же точке согласно уравнению (16). Принцип магнитной фокусировки электронного пучка и лежит в основе одного из методов определения е/m. Зная величину В и измерив частоту обращения электронов , по формуле (16) легко вычислить значение удельного заряда.

Если зона действия магнитного поля ограничена, а скорость электрона достаточно велика, то электрон движется по дуге и вылетает из магнитного поля, изменив направление своего движения (рис 5). Угол отклонения  рассчитывается так же, как и для электрического поля и равен: , (17) где в данном случае – протяжённость зоны действия магнитного поля. Таким образом, отклонение электрона в магнитном поле пропорционально е/m и В и обратно пропорционально.

В скрещенных электрическом и магнитном полях отклонение электрона зависит от направления векторов и и соотношения их модулей. На рис. 6 электрическое и магнитное поля взаимно перпендикулярны и направлены таким образом, что первое из них стремиться отклонить электрон вверх, а второе – вниз. Направление отклонения зависит от соотношения сил F л и . Очевидно, что при равенстве сил и F л (18) электрон не изменит направления своего движения.

Предположим, что под действием магнитного поля электрон отклонился на некоторый угол . Затем приложим электрическое поле некой величины, чтобы смещение оказалось равным нулю. Найдём из условия равенства сил (18) скорость и подставим её значение в уравнение (17).

Откуда

(19)

Таким образом зная угол отклонения , вызванный магнитным полем , и величину электрического поля , компенсирующую это отклонение, можно определить величину удельного заряда электрона е/m .

Определение удельного заряда методом магнетрона.

Определение е/m в скрещенных электрическом и магнитном полях может быть выполнено также с помощью двухэлектродного электровакуумного прибора – диода. Этот метод известен в физике, как метод магнетрона. Название метода связано с тем, что используемая в диоде конфигурация электрического и магнитного полей идентична конфигурации полей в магнетронах – приборах, используемых для генерации электромагнитных колебаний в СВЧ - области.

Между цилиндрическим анодом А и цилиндрическим катодом К (рис.7), расположенным вдоль анода, приложена некоторая разность потенциалов U , создающая электрическое поле E, направленное по радиусу от анода к катоду. В отсутствие магнитного поля (В=0) электроны движутся прямолинейно от катода к аноду.

При наложении слабого магнитного поля, направление которого параллельно оси электродов, траектория электронов искривляется под действием силы Лоренца, но они достигают анода. При некотором критическом значении индукции магнитного поля В=В кр, траектория электронов искривляется настолько, что в момент достижения электронами анода вектор их скорости направлен по касательной к аноду. И, наконец, при достаточно сильном магнитном поле В>В кр, электроны не попадают на анод. Значение В кр не является постоянной величиной для данного прибора и зависит от величины приложенной между анодом и катодом разности потенциалов.

Точный расчёт траектории движения электронов в магнетроне сложен, так как электрон движется в неоднородном радиальном электрическом поле. Однако, если радиус катода много меньше радиуса анода b , то электрон описывает траекторию, близкую к круговой, так как напряжённость электрического поля, ускоряющего электроны, будет максимальной в узкой прикатодной области. При В=В кр радиус круговой траектории электрона, как видно из рис.8. будет равен половине радиуса анода R=b /2. Следовательно, согласно (13) для В кр имеем:b ... Показатель преломления. Связь напряженностей электрического и магнитного полей в электромагнитной волне. ... магнитном поле с индукцией B. 13.Заряженная частица движется в магнитном поле по окружности радиуса 1 см со скоростью106 м/с. Индукция магнитного поля ...

1.5. Движение заряженных частиц в электрическом поле

1.5.1. Электрон, обладающий нулевой начальной скоростью, попадает в однородное электрическое поле напряжённостью Е = 200 кВ/м. Какое расстояние пролетит, предоставленный самому себе электрон за время t = 1 нс? Какой скорости он достигнет?

Решение

1. Определим величину силы Кулона, действующую на электрон массой m @ 1×10 -30 кг при попадании его в электрическое поле напряжённостью Е

где е @ 1,6×10 -19 Кл - заряд электрона.

2. Для электрона, который в рамках классических представлений считается частицей, справедлив второй закон Ньютона, посредствам которого можно найти ускорение частицы

Впечатляющая величина ускорения обусловлена весьма малой массой электрона и относительно большим значением силы.

3. Путь, пройденный электроном за заданный промежуток времени найдём, используя кинематические соотношения

. (3)

4. Скорость электрона в конце заданного промежутка времени определим из закона сохранения импульса

. (4)

1.5.2. Протон и электрон необходимо разогнать до скорости v = 30 Мм/с. Какую разность потенциалов они должны при этом пройти?

Решение

1. Работа по перемещению в электрическом поле заряда в соответствии с теоремой об изменении кинетической энергии равна

, (1)

где v1 и v2 - начальная и конечная скорость частицы, m - масса частицы. Если предположить, что разгон частиц начинается из состояния покоя, то уравнение (1) можно упростить

. (1)

2. Разность потенциалов, необходимая для разгона электрона, обладающего массой me @кг и зарядом е @ 1,6×10 -19 кг


. (2)

3. Разность потенциалов, необходимая для разгона до заданной скорости протона, имеющего массу mp @ 1,67×1кг и заряд p @ 1,6×1Кл

. (3)

1.5.3. Между катодом и анодом разность потенциалов составляет U = 90 В, расстояние равно r = 1 ×10 - 3 м. С каким ускорением а движется от катода к аноду электрон? За какое время он проходит расстояние r. Какова скорость электрона v в момент удара о поверхность анода? За какое время t электрон пролетает расстояние от катода до анода?

Решение

1. Воспользовавшись уравнением (1) предыдущей задачи, определим конечную скорость электрона перед ударом в анод

2. Запишем кинематические уравнения движения электрона и определим время полёта электрона от катода к аноду

3. Ускорение электрона определим из верхнего уравнения системы уравнений (2)

. (3)

1.5.4. Пылинка массой m = 1 ×10 - 12 кг, несущая на себе электрический заряд в пять электронов, прошла в вакууме ускоряющую разность потенциалов U = 3 10 6 В. Какова скорость и кинетическая энергия пылинки?

Решение

1. Изменение энергии пылинки, в соответствии с теоремой об изменении кинетической энергии равно работе сил электрического поля

2. Выразим энергию пылинки в электрон-вольтах

. (2)

3. Определим скорость пылинки

. (3)

1.5.5. Заряженная частица, пройдя ускоряющую разность потенциалов U = 0,6 МВ, приобрела скорость v = 5,4 Мм/с. Определить удельный заряд частицы (отношение заряда к массе).

Решение

1. Запишем теорему об изменении кинетической энергии частицы и определим удельный заряд

1.5.6. Протон, начальная скорость которого была равна v0 = 100 км/с, пройдя ускоряющее электрическое поле с напряжённостью Е = 300 В/см удвоил свою скорость. Какой путь прошёл протон, если вектор его скорости совпадал по направлению с вектором напряжённости?

Решение

1. Определим величину силы Кулона, действующей на протон, обладающий массой m = 1,67×1кг и зарядом е = +1,6 -19 Кл

2. Запишем теорему об изменении кинетической энергии протона при прохождении им электрического поля

, (2)

и определим, пройденный протоном путь s

. (3)

1.5.7. Бесконечная плоскость заряжена отрицательно с поверхностной плотностью s = 35,4 нКл/м2. В направлении силовой линии поля, созданного плоскостью движется электрон. На расстоянии y0 = 5 ×10 - 2 м электрон имел кинетическую энергию К = 80 эВ. На какое минимальное расстояние ymin электрон может приблизиться к плоскости?

Решение

2. Тормозная сила, действующая со стороны электрического поля на электрон

3. Электрон остановит своё движение в момент времени, когда работа кулоновской силы, тормозящей его движение, станет равной по величине начальной кинетической энергии, электрон, при этом пройдёт некоторое расстояние y

(4)

4. Расстояние до пластины в момент остановки электрона определится как

. (5)

1.5.8. Электрон, летевший горизонтально со скоростью v0 = 1,6 Мм/с, влетел в однородное электрическое поле с напряжённостью Е = 90 В/см, направленное вертикально. Определить вектор скорости электрона v через t = 1 нс?


Решение

1. В вертикальном электрическом поле на электрон будет действовать сила Кулона, которая обеспечивает ускорение, направленное по оси оy

, (1)

где е @ 1,6×1Кл - заряд электрона, m @ 1×1кг - масса электрона.

2. Поскольку проекция ускорения на ось ох равна нулю, то горизонтальное движение электрона будет протекать с начальной скоростью v0, т. е. vx = v0, а вертикальная составляющая скорости будет определяться уравнением

в рассматриваемом случае, с учётом уравнения (1):

3. Таким образом, через время t модуль скорости электрона будет равен

. (4)

. (5)

1.5.9. В плоский конденсатор влетает электрон со скоростью v0 = 2 Мм/с, направленной перпендикулярно вектору напряжённости электрического поля. На какое расстояние h сместится электрон к нижней обкладке конденсатора за время пролёта пластин конденсатора? Длина пластин составляет х = 5 см, расстояние между пластинами d = 2 см, разность потенциалов между обкладками U = 2 В.

Решение

1. Запишем кинематические уравнения движения электрона под действием постоянной силы Кулона F = eE= eU/d

2. Поскольку вдоль горизонтальной оси движение электрона происходит с постоянной скоростью, то время пролёта конденсатора можно определить как

3. Смещение электрона по вертикали, таким образом, можно представить следующим уравнением

4. Вертикальное ускорение электрона а определится посредствам второго закона Ньютона

. (4)

5. Подставим значение ускорения из уравнения (4) в уравнение (3)

. (5)

1.5.10. Протон и a - частица из состояния покоя проходят ускоряющее электрическое поле. В каком отношении будут находиться их скорости?

Решение

1. Как известно, a - частица состоит из двух протонов и двух нейтронов, поэтому заряд a - частицы в два раза больше заряда протона, т. е. qa = 2qp, а масса - в четыре раза больше, т. е. ma = 4 mp.

2. При прохождении частицами одинаковой разности потенциалов Dj силами поля будет совершаться работа и они будут приобретать соответствующую кинетическую энергию

. (1)

1.6. Электрический диполь. Свойства диэлектриков

1.6.2. Диполь c электрическим моментом р = 0,12 нКл ×м образован двумя точечными зарядами q. Определить напряжённость электрического поя Е и потенциал j в точках А и В, находящихся на расстоянии r = 8 см от центра диполя.

Решение

1. Определим напряжённость электрического поля диполя в точка А, которая отстоит от центра диполя на расстоянии r = 0,08 м, причём радиус-вектор r составляет с осью диполя угол a = p/2, т. е. cosa = 0

2. Потенциал в точке А

. (2)

https://pandia.ru/text/78/367/images/image042_0.gif" width="269" height="40">. (4)

1.6.3. Определить напряжённость Е и потенциал j электрического диполя с моментом р = 4 пКл ×м на расстоянии r = 0.1 м от центра диполя в направлении a = 600 с вектором электрического момента .

Решение

, (1)

https://pandia.ru/text/78/367/images/image046_0.gif" width="267" height="44">. (2)

1.6.4. Диполь с электрическим моментом р = 1 пКл ×м равномерно вращается с частотой n = 10 3 с - 1 относительно оси, проходящей через центр диполя перпендикулярно своему плечу. Получить закон изменения потенциала во времени для некой точки, отстоящей от центра диполя на расстоянии r = 1 см и лежащей в плоскости диполя. В начальный момент времени потенциал равен нулю j(0) = 0.

Решение

1. В данном случае вектор электрического момента, оставаясь постоянным по модулю, изменяет во времени своё положение, другими словами, величина угла a = f(t). Эти обстоятельства приводят к тому, что величина потенциала тоже станет зависимой от времени

. (1)

2. Определим амплитудное значение потенциала, которое будет иметь место при t = 0, когда cos(2pn0) = 1

. (2)

, (3)

и запишем уравнение потенциала, как функцию времени

Таким образом потенциал в точке А, расположенной в плоскости вращения диполя изменяется во времени по закону косинуса.

1.6.5. Электрический диполь с моментом р = 0,1 нКл ×м укреплён на упругой нити. Когда в пространстве, где находится диполь, было создано электрическое поле напряжённостью Е = 3 кВ/м перпендикулярное вектору момента, диполь повернулся на угол a = 300. Определить постоянную кручения нити z, равную моменту закручивающей силы, отнесённому к 1 рад.

1.6.6. Перпендикулярно плечу диполя с электрическим моментом р = 12 пКл ×м возбуждено однородное электрическое поле напряжённостью Е = 300 кВ/м. Под действием поля диполь начинает поворачиваться относительно оси, проходящей через его центр. Определить угловую скорость диполя w в момент прохождения им положения равновесия. Момент инерции диполя относительно оси, перпендикулярной плечу и проходящей через центр диполя равен J = 2 ×10 - 9 кг ×м2.

Решение

1. Кинетическая энергия вращательного движения определяется как

2. Механический момент, действующий на диполь в электрическом поле, равен

. (2)

3.Полная работа при повороте диполя в электрическом поле зависит от электрического момента и угла поворота

. (3)

4. При прохождении состояния равновесия a1 =0, a2 = p/2, т. к. электрическое поле в начальном положении диполя перпендикулярно его оси

1.6.7. Колба проекционной лампы заполненная криптоном, находящимся под давлением р = 20 МПа при температуре Т = 400 К помещена в электрическое поле напряжённостью Е = 2 МВ/м. Найти диэлектрическую проницаемость криптона и его поляризованность Р. Поляризуемость криптона принять равной a = 4,5 ×10 - 29 м3.

Решение

1. Диэлектрическая проницаемость e входит в уравнение Клаузиуса - Мосотти

где n - концентрация атомов криптона.

2. Концентрацию молекул газа определим из уравнения молекулярно-кинетической теории

, (2)

где kB = 1,4×1Дж/К - постоянная Больцмана.

3. Подставим значение n из уравнения (2) в уравнение (1)

4. Разрешим уравнение (3) относительно величины диэлектрической проницаемости e

. (3)

5. Величина поляризованности определяется в общем виде уравнением

где рi - дипольный момент, наведённый в i - м атоме, k - число атомов в объёме DV. При нахождении атомов в однородном электрическом поле все атомы имеют дипольные моменты, совпадающие по направлению и по величине, это даёт возможность от геометрического сложения в уравнении (4) перейти к алгебраическому

6. С другой стороны, отношение полного числа атомов к занимаемому ими объёму равно концентрации k/DV = n

8. Выразим напряжённость локального поля Е* через напряжённость внешнего поля Е, а концентрацию через давление и температуру

(8)

1.6.8. В близи атома на расстоянии r = 1 нм находится a - частица, представляющая собой дважды ионизированный атом гелия с зарядом 2| e|. Электрическое поле a - частицы индуцирует электрический момент атома р = 1 ×10 - 32 Кл ×м. Найти поляризуемость этого атома.

Решение

1. Поляризуемость a пропорциональна индуцированному электрическому моменту р и обратно пропорциональна напряжённости локального магнитного поля

2. В данном случае внешнее электрическое поле создаётся a - частицей, оно же, по сути, будет являться и локальным

3. Совместим уравнения (1) и (2)

. (3)

1.6.9. Вода имеет плотность r = 103 кг/м3 и показатель преломления n = 1,33. Определить электронную Поляризуемость aе молекул воды.

Решение

1. Электронная поляризуемость молекул определяется формулой Лоренц - Лорентца

, (1)

где m = 18×10 - 3 кг/моль, NA = 6×1023 моль - 1.

2. Разрешим уравнение (1) относительно aе

. (2)

. (3)

1.7. Электрическая ёмкость. Конденсаторы

1.7.1. Определить электрическую ёмкость С уединённого проводящего шара радиусом R = 1 м, погруженного в трансформаторное масло.

Решение

1. Диэлектрическая проницаемость керосина e = 2, ёмкость шара определяется уравнением

1.7.2. Найти электрическую ёмкость С проводящей сферы, погруженной в воду. Радиус сферы составляет R = 2 см.

Решение

1. Воспользуемся уравнением предыдущей задачи, с учётом значения диэлектрической проницаемости воды e =80

1.7.3. Определить электрическую ёмкость Земли, приняв её за шар радиусом R @ 6,4 ×105 м.

Решение

1. Воспользуемся уравнением для электроёмкости шара

1.7.4. Два металлических шара радиусами R1 = 2 см и R2 = 6 см соединяют проводником с пренебрежимо малой ёмкостью и сообщают электрический заряд Q = 1 нКл. Определить поверхностную плотность зарядов.

Решение

1. Запишем уравнения электрической ёмкости шаров

2. Электрическая ёмкость шара определяется, как известно, величиной размещённого на нём заряда и потенциалом C = Q/j. Поскольку шары соединили безъемкостным проводником, то потенциал обоих шаров будет одинаков, а вот электрические ёмкости - разные

где Q1, Q2 и С1, С2 - заряды и электроёмкости шаров, соответственно.

3. В соответствии с законом сохранения заряда

4. Образуем систему уравнений, из которой можно найти заряд каждого шара

, (4)

, (5)

. (7)

https://pandia.ru/text/78/367/images/image086.gif" width="343" height="43">. (9)

1.7.5. Шар радиусом R1 = 6 см заряжен до потенциала j1 = 300 В, а шар радиусом R2 = 4 см до потенциала 500 В. Найти потенциал шаров после их соединения безъемкостным проводником.

Решение

1. Запишем уравнения, определяющие электрическую ёмкость шаров

2. Общая ёмкость шаров после соединения

3. Поскольку известны потенциалы шаров до их соединения, можно определить их заряды

4. Электрический заряд шаров после их соединения безъёмкостным проводником

5. Потенциал шаров после их соединения

1.7.6. Медное пушечное ядро, массой m = 10 кг вследствие трения при полёте о воздух приобрело электрический заряд, эквивалентный N = 1010 некомпенсированным элементарным зарядам. Определить электрическую ёмкость ядра и его потенциал.

Решение

1. Для определения электрической ёмкости пушечного ядра сферической формы необходимо знать его радиус, который можно найти по известной массе m и плотности меди r = 8,9×103 кг/м3

. (1)

2. Электрическая ёмкость медного пушечного ядра

3. Электрический потенциал ядра

. (3)

1.7.7. Заряженное проводящее тело сферической формы радиусом R = 2 см обладает электрической энергией W = 1 Дж. Определить потенциал этого тела.

Решение

1. Электрическая энергия и потенциал заряженного тела связаны следующим уравнением

1.7.8. Найти электрическую ёмкость С плоского конденсатора с площадью пластин s = 100 см2 и расстоянием между ними d = 0,1 мм заполненным слюдой с диэлектрической проницаемостью e = 7.

Решение

1. Электрическая ёмкость плоского конденсатора определяется уравнением

. (1)

1.7.9. Между пластинами плоского конденсатора, заряженного до разности потенциалов U = 600 В, находятся два слоя диэлектриков: стекло толщиной d1 = 7 мм и эбонит толщиной d2 = 3 мм. Площадь каждой из пластин s = 200 см2. Определить электрическую ёмкость конденсатора С, смещение D, напряжённость Е и падение потенциала на каждом слое диэлектрика.

Решение

1. Примем диэлектрическую проницаемость стекла e1 = 7, проницаемость эбонита e2 = 3. Предложенную в задаче конструкцию можно рассматривать как два последовательно соединённых конденсатора, причём

, (1)

, (2)

2. Определим заряд конденсатора

3. Поверхностная плотность электрического заряда s, которая по величине совпадает со значением смещения D

. (5)

4. Поскольку С1 = С2 = 180 пФ, то j1 = j2 = 300 В, а для напряжённости поля Е можно записать следующие соотношения

. (6)

. (7)

1.7.10. Расстояние между пластинами плоского конденсатора d = 1,3 мм, площадь пластин составляет s = 20 см2. В пространстве между пластинами конденсатора расположены два слоя диэлектриков: слюда толщиной d1 = 0,7 мм и эбонита толщиной d2 = 0,3 мм. Определить электрическую ёмкость такого конденсатора.

Решение

1. Данную конструкцию электрической ёмкости можно рассматривать как три последовательно включённых конденсатора: один с диэлектриком из слюды, второй - из эбонита, третий с диэлектриком из воздуха.

2. Диэлектрическая проницаемость слюды e1 = 7, диэлектрическая проницаемость эбонита e2 = 3, диэлектрическая проницаемость воздуха e3 = 1.

3. Три последовательно соединённых конденсатора имеют общую ёмкость, определяемую уравнением

. (1)

4. Ёмкости отдельных конденсаторов соответственно равны

5. Сопоставим уравнения (1) и (2)

. (3)

6. Преобразуем последнее уравнение к более простому виду

, (4)

, (5)

. (6)

7. Поделим числитель и знаменатель уравнения (6) па произведение диэлектрических проницаемостей (e1e2e3)

, (7)

, (8)

8. Подставим в уравнение (8) заданные по условию задачи и справочные данные

1.7.11. На пластинах плоского конденсатора равномерно распределён электрический заряд плотностью s = 0,2 мкКл/м2. Расстояние между пластинами d = 1 мм. На сколько изменится разность потенциалов на обкладках конденсатора, если расстояние между пластинами увеличить в три раза.

Решение

1. Разность потенциалов на обкладках конденсатора и его заряд связаны следующим соотношением

2. При увеличении расстояния между обкладками изменяется ёмкость конденсатора и разность потенциалов между обкладками, другими словами

3. Определим разность потенциалов при измени расстояния между обкладками

1.7.12. Два кубика электрической ёмкостью С1 и С2 заряжены до потенциалов j1 и j2 соответственно. Определить ёмкость прямоугольной призмы, составленной из этих кубиков.

Решение

1. Поскольку соединяемые тела не представляют собой конденсаторы в классическом их понимании, то использовать для нахождения общей ёмкости формул последовательного или параллельного соединения не представляется возможным. В данном случае применимы законы сохранения заряда и энергии.

2. Запишем законы сохранения заряда и энергии

. (1)

3. Перепишем систему уравнений (1) с учётом значений зарядов кубиков и общей их энергии Wo

. (2)

4. Совместим уравнения системы (2)

, (3)

. (4)

1.7.13. На плоский конденсатор с парафиновым диэлектриком (e = 2) подано напряжение U = 4000 В. Расстояние между обкладками d = 2 мм. Определить поверхностную плотность зарядов s на обкладках.

Решение

1. Выразим электрическую ёмкость конденсатора через его электрические и геометрические параметры

2. Подставим в уравнение (1) заданные величины

. (2)

1.7.14. Плоский конденсатор представляет собой две круглые проводящие пластины радиусом r = 1 см, пространство между которыми заполнено винипластом с диэлектрической проницаемостью e = 3. Какой максимальный заряд Qmax должен быть на пластинах, чтобы при напряжённости электрического поля Е = 45 кВ/мм произошёл электрический пробой диэлектрика?

Решение

1. Для решения задачи воспользуемся уравнением (1) предыдущей задачи

. (3)

2. Разрешим уравнение (3) относительно заряда Q

1.7.14. Электростатические весы представляют собой устройство, в котором действие силы тяжести компенсируется силой притяжения между разноимённо заряженными пластинами, расположенными на расстоянии d = 1 мм. Какой добавочный груз нужно поместить на чашку весов, чтобы расстояние между пластинами сохранилось при зарядке конденсатора напряжением U = 1 кВ? Площадь пластин составляет s = 5 ×10 - 3 м2.

Решение

1. Определим силу Кулона, действующую на положительно заряженную пластину

2. С другой стороны, заряд конденсатора можно выразить через его ёмкость и разность потенциалов между обкладками

3. Подставим значение заряда из уравнения (2) в уравнение (1)

4. Определим массу перегрузка m для уравновешивания весов

1.7.15. Электростатические весы устроены так, что одна из пластин конденсатора укреплена неподвижно, а вторая соединена с пружиной с коэффициентом жёсткости k. Площадь обкладок конденсатора равна s. Определить удлинение пружины D l при сообщении пластинам равных по модулю и противоположных по знаку зарядов Q.

Решение

1. Воспользовавшись уравнением (1) предыдущей задачи, определим величину силы, возникающей при взаимодействии разноимённо заряженных пластин

2. Притяжение пластин будет сопровождаться удлинением пружины на величину Dl и возникновением силы упругости Fу = k×Dl, другими словами

. (2)

1.7.16. В плоском переменном конденсаторе ёмкость изменяется путём увеличения расстояния между пластинами. Какую работу совершает источник тока, к которому подключены пластины, если ёмкость меняется от С1 до С2, а заряд конденсатора остаётся равным Q?

Решение

1. Как было показано в предыдущих задачах, разноимённо заряженные пластины притягиваются с силой

2. При элементарном изменении расстояния между пластинами на dу ёмкость конденсатора изменяется на dC, при этом внешним источником энергии, каковым является батарея, совершается элементарная работа

полная работа при изменении расстояния от d1 до d2 определится как

3. Разрешим уравнения (2) относительно зарядов и определим их разность

, (3)

1.7.18. Пластины плоского воздушного конденсатора несут заряды + 3 Q и – Q. Определить разность потенциалов между пластинами, если расстояние между ними d, а их площадь - s.

Решение

1. Будем исходить из того, что напряжённость электрического поля между двумя параллельными заряженными пластинами определяется уравнением

где https://pandia.ru/text/78/367/images/image151.gif" width="165" height="40">. (2)

, (3)

1.7.19. Плоский воздушный конденсатор погружают в жидкий диэлектрик с диэлектрической проницаемостью e2 двумя способами, показанными на рисунке. Во сколько раз, при этом, меняется ёмкость конденсатора.

Решение

1. Когда в жидкий диэлектрик погружена половина площади обоих пластин, то такой сложный конденсатор можно рассматривать как две электрические ёмкости, соединённые параллельно

где e1 = 1 - диэлектрическая проницаемость воздуха, e2 - диэлектрическая проницаемость жидкого диэлектрика.

2. Изменение ёмкости для рассмотренного выше случая составит

где С0 = e0e1s/d - электрическая ёмкость воздушного конденсатора.

3. При погружении в диэлектрик одной пластины образуется сложная ёмкость, которую можно представить в виде двух последовательно соединённых конденсаторов С2,1 и С2,2

, (3)

4. Отношение ёмкостей в этом случае определится уравнением

. (6)

1.7.20. В отсутствии силы тяжести плоский воздушный конденсатор с пластинами площадью s и расстоянием между ними d1 подключён к источнику с электродвижущей силой e. К нижней пластине плотно прижата проводящая пластина массой m и толщиной d. С какой скоростью пластина ударится о верхнюю обкладку, если её отпустить?

Решение

1. На проводящей пластине, прижатой к нижней обкладке, индуцируется электрическое поле, причём отрицательные заряды будут концентрироваться со стороны нижней обкладки, а положительные - на противоположной. Так как пластина прижата плотно к обкладке и расположение её несимметрично, то часть электронов обкладки перейдёт на пластину, заряд которой можно определить как

, (1)

где С = e0s/(d1 – d2) - ёмкость воздушного конденсатора, образованного металлической пластиной и верхней обкладкой, e* - ЭДС источника тока.

2. Отрицательно заряженная металлическая пластина будет притягиваться к верхней положительно заряженной обкладке конденсатора. Вследствие второго закона Ньютона, наличие силы, действующей на массу, должно неминуемо привести к её движению. Движение пластины описывается законом сохранения энергии, в частности, теоремой об изменении кинетической энергии. Работа, совершаемая силами электрического поля равна изменению кинетической энергии пластины. С учётом неподвижности пластины в начальный момент времени, сказанное выше, можно представить следующим образом

, (2)

откуда скорость пластины в момент достижения верхней обкладки определится уравнением

. (3)

1.7.21. Во сколько раз изменится ёмкость плоского воздушного конденсатора с пластинами площадью s1 и расстоянием между ними d1, если параллельно обкладкам внести парафиновую пластину площадью s2 = s1/2 и толщиной d2 = d1/2?

Решение

1. В данном случае, при внесении пластины, ёмкость можно представить как три конденсатора, с последовательным и параллельным включением. Электроёмкость конденсатора, образованного пластинами и воздушным промежутком определяется как

2. При внесении пластины с воздушным промежутком над ней представляет собой два последовательно соединённых конденсатора С2,1 и С2,2, и параллельную ёмкость С2,3

1.7.23. Определить ёмкость конденсаторного соединения, ели С1 = С2 = С3 = С4 = С5 = 1 мкФ

Решение

1. Так как все конденсаторы задействованные в рассматриваемой схеме одинаковые, то потенциалы точек 2 и 4 будут тоже одинаковыми, а это значит, что при подключении батареи к источнику тока конденсатор С5 заряжаться не будет. В этой связи приведенную схему можно упростить.

2. В отсутствии конденсатора С5 схема представляет собой комбинацию последовательного и параллельного включения

. (2)

3. По условию задачи все ёмкости одинаковые по величине, поэтому введём обозначение С1 = С2 = С3 = С4 = С, тогда


Top