Что значит найти длину отрезка. Нахождение координат середины отрезка, примеры, решения


В этой статье мы поговорим о нахождении координат середины отрезка по координатам его концов. Сначала мы дадим необходимые понятия, далее получим формулы для нахождения координат середины отрезка, в заключении рассмотрим решения характерных примеров и задач.

Навигация по странице.

Понятие середины отрезка.

Для того, чтобы ввести понятие середины отрезка, нам потребуются определения отрезка и его длины.

Понятие отрезка дается на уроках математики в пятом классе средней школы следующим образом: если взять две произвольных несовпадающих точки А и В , приложить к ним линейку и провести от А к В (или от В к А ) линию, то мы получим отрезок АВ (или отрезок В А). Точки А и В называются концами отрезка . Следуем иметь в виду, что отрезок АВ и отрезок ВА есть один и тот же отрезок.

Если отрезок АВ бесконечно продолжить в обе стороны от концов, то мы получим прямую АВ (или прямую ВА ). Отрезок АВ представляет собой часть прямой АВ , заключенную между точками А и В . Таким образом, отрезок АВ – это объединение точек А , В и множества всех точек прямой АВ , находящихся между точками А и В . Если взять произвольную точку М прямой АВ , находящуюся между точками А и В , то говорят, что точка М лежит на отрезке АВ .

Длиной отрезка АВ называется расстояние между точками А и В при заданном масштабе (отрезке единичной длины). Длину отрезка АВ будем обозначать как .

Определение.

Точка С называется серединой отрезка АВ , если она лежит на отрезке АВ и находится на одинаковом расстоянии от его концов.

То есть, если точка С является серединой отрезка АВ , то она лежит на нем и .

Далее нашей задачей будет нахождение координат середины отрезка АВ , если заданы координаты точек А и В на координатной прямой или в прямоугольной системе координат .

Координата середины отрезка на координатной прямой.

Пусть нам задана координатная прямая Ох и две несовпадающих точки А и В на ней, которым соответствуют действительные числа и . Пусть точка С – середина отрезка АВ . Найдем координату точки С .

Так как точка С – середина отрезка АВ , то справедливо равенство . В разделе расстояние от точки до точки на координатной прямой мы показали, что расстояние между точками равно модулю разности их координат, следовательно, . Тогда или . Из равенства находим координату середины отрезка АВ на координатной прямой: - она равна полусумме координат концов отрезка. Из второго равенства получаем , что невозможно, так как мы брали несовпадающие точки А и В .

Итак, формула для нахождения координаты середины отрезка АВ с концами и имеет вид .

Координаты середины отрезка на плоскости.

Введем прямоугольную декартову систему координат Оxyz на плоскости. Пусть нам даны две точки и и известно, что точка С – середина отрезка АВ . Найдем координаты и точки С .

По построению прямые параллельны, а также параллельны прямые , поэтому, по теореме Фалеса из равенства отрезков АС и СВ следует равенство отрезков и , а так же отрезков и . Следовательно, точка - середина отрезка , а - середина отрезка . Тогда в силу предыдущего пункта этой статьи и .

По этим формулам можно вычислять координаты середины отрезка АВ и в случаях, когда точки А и В лежат на одной из координатных осей или на прямой, перпендикулярной одной из координатных осей. Оставим эти случаи без комментариев, а приведем графические иллюстрации.

Таким образом, середина отрезка АВ на плоскости с концами в точках и имеет координаты .

Координаты середины отрезка в пространстве.

Пусть в трехмерном пространстве введена прямоугольная система координат Oxyz и заданы две точки и . Получим формулы для нахождения координат точки С , которая является серединой отрезка АВ .

Рассмотрим общий случай.

Пусть и - проекции точек А , В и С на координатные оси Оx , Оу и Oz соответственно.


По теореме Фалеса , следовательно, точки есть середины отрезков соответственно. Тогда (смотрите первый пункт этой статьи). Так мы получили формулы для вычисления координат середины отрезка по координатам его концов в пространстве .

Эти формулы можно применять и в случаях, когда точки А и В лежат на одной из координатных осей или на прямой, перпендикулярной одной из координатных осей, а также если точки А и В лежат в одной из координатных плоскостей или в плоскости, параллельной одной из координатных плоскостей.

Координаты середины отрезка через координаты радиус-векторов его концов.

Формулы для нахождения координат середины отрезка легко получить, обратившись к алгебре векторов.

Пусть на плоскости задана прямоугольная декартова система координат Oxy и точка С – середина отрезка АВ , причем и .

По геометрическому определению операций над векторами справедливо равенство (точка С является точкой пересечения диагоналей параллелограмма, построенного на векторах и , то есть, точка С – середина диагонали параллелограмма). В статье координаты вектора в прямоугольной системе координат мы выяснили, что координаты радиус-вектора точки равны координатам этой точки, следовательно, . Тогда, выполнив соответствующие операции над векторами в координатах , имеем . Откуда можно сделать вывод, что точка С имеет координаты .

Абсолютно аналогично могут быть найдены координаты середины отрезка АВ через координаты его концов в пространстве. В этом случае, если С – середина отрезка АВ и , то имеем .

Нахождение координат середины отрезка, примеры, решения.

Во многих задачах приходится использовать формулы для нахождения координат середины отрезка. Рассмотрим решения наиболее характерных примеров.

Начнем с примера, в котором лишь требуется применить формулу.

Пример.

На плоскости заданы координаты двух точек . Найдите координаты середины отрезка АВ .

Решение.

Пусть точка С – середина отрезка АВ . Ее координаты равны полусуммам соответствующих координат точек А и В :

Таким образом, середина отрезка АВ имеет координаты .

Измерить отрезок - значит найти его длину. Длина отрезка - это расстояние между его концами.

Измерение отрезков производится путём сравнения данного отрезка с другим отрезком, принятым за единицу измерения. Отрезок, принятый за единицу измерения, называется единичным отрезком .

Если за единичный отрезок принят сантиметр, то для определения длины данного отрезка надо узнать, сколько раз в данном отрезке помещается сантиметр. В этом случае измерение удобно производить с помощью сантиметровой линейки.

Начертим отрезок AB и измерим его длину. Приложим шкалу сантиметровой линейки к отрезку AB так, чтобы её нулевая точка (0) совпала с точкой A :

Если при этом окажется, что точка B совпадает с некоторым делением шкалы - например, 5, то говорят: длина отрезка AB равна 5 см, и пишут: AB = 5 см.

Свойства измерения отрезков

Когда точка делит отрезок на две части (на два отрезка), длина всего отрезка равна сумме длин этих двух отрезков.

Рассмотрим отрезок AB :

Точка C делит его на два отрезка: AC и CB . Мы видим, что AC = 3 см, CB = 4 см и AB = 7 см. Таким образом, AC + CB = AB .

Любой отрезок имеет определённую длину, большую нуля.

Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат каждая точка имеет три координаты. Зная координаты двух точек, можно определить расстояние между этими двумя точками.

Вам понадобится

  • Декартовы, полярные и сферические координаты концов отрезка

Инструкция

Рассмотрите для начала прямоугольную декартову систему координат. Положение точки в пространстве в этой системе координат определяется координатами x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами этой точки.
Пусть у вас теперь есть две точки с координатами x1,y1,z1 и x2,y2 и z2 соответственно. Обозначьте за r1 и r2, соответственно, радиус-векторы первой и второй точки. Очевидно, что расстояние между этими двумя точками будет равно модулю вектора r = r1-r2, где (r1-r2) - векторная разность.
Координаты вектора r, очевидно, будут следующими: x1-x2, y1-y2, z1-z2. Тогда модуль вектора r или расстояние между двумя точками будет равно: r = sqrt(((x1-x2)^2)+((y1-y2)^2)+((z1-z2)^2)).

Рассмотрите теперь полярную систему координат, в которой координата точки будет задаваться радиальной координатой r (радиус-вектор в плоскости XY), угловой координатой? (углом между вектором r и осью X) и координатой z, аналогичной координате z в декартовой системе.Полярные координаты точки можно перевести в декартовы следующим образом: x = r*cos?, y = r*sin?, z = z. Тогда расстояние между двумя точками с координатами r1, ?1 ,z1 и r2, ?2, z2 будет равно R = sqrt(((r1*cos?1-r2*cos?2)^2)+((r1*sin?1-r2*sin?2)^2)+((z1-z2)^2)) = sqrt((r1^2)+(r2^2)-2r1*r2(cos?1*cos?2+sin?1*sin?2)+((z1-z2)^2))

Теперь рассмотрите сферическую систему координат. В ней положение точки задается тремя координатами r, ? и?. r - расстояние от начала координат до точки, ? и? - азимутальные и зенитный угол соответственно. Угол? аналогичен углу с таким же обозначением в полярной системе координат, а? - угол между радиус-вектором r и осью Z, причем 0координатами r1, ?1, ?1 и r2, ?2 и?2 будет равно R = sqrt(((r1*sin?1*cos?1-r2*sin?2*cos?2)^2)+((r1*sin?1*sin?1-r2*sin?2*sin?2)^2)+((r1*cos?1-r2*cos?2)^2)) = (((r1*sin?1)^2)+((r2*sin?2)^2)-2r1*r2*sin?1*sin?2*(cos?1*cos?2+sin?1*sin?2)+((r1*cos?1-r2*cos?2)^2))

Пусть отрезок задан двумя точками в плоскости координат, тогда можно найти его длину с помощью теоремы Пифагора.

Инструкция

Пусть заданы координаты концов отрезка (x1- y1) и (x2- y2). Начертите отрезок в системе координат.

Опустите перпендикуляры из концов отрезка на оси X и Y. Отрезки, отмеченные на рисунке красным, являются проекциями исходного отрезка на оси координат.

Если выполнить параллельный перенос, отрезков-проекций к концам отрезков, то получится прямоугольный треугольник. Катетами этого треугольника будут являться перенесенные проекции, а гипотенузой - сам отрезок AB.

Длины проекций легко вычисляются. Длина проекции на ось Y будет равна y2-y1, а длина проекции на ось X - x2-x1. Тогда по теореме Пифагора |AB|²- = (y2 - y1)²- + (x2 - x1)²-, где |AB| - длина отрезка.

Представив эту схему нахождения длины отрезка в общем случае, легко вычислять длину отрезка, не строя отрезок. Посчитаем длину отрезка, координаты концов которого (1-3) и (2-5). Тогда |AB|²- = (2 - 1)²- + (5 - 3)²- = 1 + 4 = 5, таким образом длина искомого отрезка равна 5^1/2.

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор , и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём вынесение множителя из-под корня . В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.


Top