Анализ нелинейных систем. Реферат: Методы исследования нелинейных систем

Предмет:

"Теория автоматического управления"

Тема:

"Методы исследования нелинейных систем"

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

,

где – начальные условия.

Если отклонения

не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат -

в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)



В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4) скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

. (6)

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

(т.е. ). (7)

При этом переходной процесс описывается уравнениями

x = A sin (wt+j), (8)

y = Aw cos (wt+j),

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Если обозначить


Уравнение эллипса можно получить решением уравнения фазовых траекторий

(9)

Состояние равновесия определяется из условия

,

при этом x 0 = y 0 = 0.

Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

(10)

При этом переходной процесс описывается уравнениями:

Из уравнения фазовых траекторий

получим уравнение

Это уравнение семейства гипербол при изменении A (рис 5).


Предмет:

"Теория автоматического управления"

Тема:

"Методы исследования нелинейных систем"

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

где – начальные условия.

Если отклонения не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат - в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)


В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4)

где скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

(т.е. ). (7)

При этом переходной процесс описывается уравнениями

x = A sin (wt+j), (8)

y = Aw cos (wt+j),

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Если обозначить


Уравнение эллипса можно получить решением уравнения фазовых траекторий

(9)

Состояние равновесия определяется из условия

,

при этом x 0 = y 0 = 0.

Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

При этом переходной процесс описывается уравнениями:

Из уравнения фазовых траекторий получим уравнение


Это уравнение семейства гипербол при изменении A (рис 5).


Особая точка называется "седло". Уравнения асимптот (сепаратрис) при А = 0 имеют вид:

3. Пусть корни характеристического уравнения (3) имеют вид

Фазовая траектория имеет вид сворачивающейся спирали (рис. 6), а точка равновесия называется "устойчивый фокус".

4. Пусть корни характеристического уравнения (3) имеют вид


(12)

Переходный процесс представляет собой расходящиеся колебания, фазовая траектория – разворачивающаяся спираль. Особая точка называется "неустойчивый фокус" (рис. 7).

5. Пусть корни характеристического уравнения (3) имеют вид

(13)

Переходный процесс имеет апериодический характер. Особая точка называется "устойчивый узел" (рис. 8).


6. Пусть корни характеристического уравнения (3) имеют вид

(14)

Особая точка называется "неустойчивый узел" (рис. 9).

4. Методы построения фазовых портретов

Для построения фазовых портретов можно использовать различные методы: метод дифференциальных уравнений, метод изоклин, и др.

Метод дифференциальных уравнений . Сущность метода заключается в том, что по дифференциальным уравнениям отдельных участков нелинейного элемента строят соответствующие фазовые портреты на плоскости.

Метод изоклин – это метод линий постоянного наклона.

Пусть даны уравнения нелинейной системы:

(15)


где: – произвольные функции.

Чтобы получить фазовый портрет исключим время:

. (16)

Пусть , при этом – это уравнение линии в плоскости (x 0 y). Каждому значению константы с соответствует некоторая линия, обладающая следующим свойством: в каждой точке линии , т.е. если фазовая траектория пересекает изоклину, то она имеет постоянный наклон рис. 10.


Если провести достаточное число таких линий с соответствующими наклонами, то можно построить фазовый портрет системы. При этом точность зависит от числа изоклин. Направление движения определяется по правилу: если производная , x >0, то движение такое, что x возрастает.

5. Построение фазового портрета нелинейной системы

Рассмотрим релейную следящую систему, схема которой приведена на рис. 11.



x 1 НЭ У U пит Д ТГ P U 0




Если a¹b на вход НЭ с релейной характеристикой (рис. 12) подается сигнал При этом: b – угол поворота задающей оси; a – угол поворота отрабатывающего потенциометра.

z

– a 2 – a 1

Вследствие этого на двигатель подается напряжение ±, двигатель вращается в определенном направлении в соответствии с полярностью подаваемого напряжения до тех пор, пока оно не станет равным нулю.

Для улучшения качества переходного процесса в систему может быть включена отрицательная обратная связь по скорости двигателя с помощью тахогенератора (ТГ).

Запишем уравнения элементов системы. Для двигателя постоянного тока с независимым возбуждением

(17)

Так как поток возбуждения = const, то . Допустим, момент нагрузки мал, при этом =0.

Передаточную функцию для якорной цепи K 1 (p) можно получить из ее дифференциального уравнения

(18)

Для редуктора и угла поворота вала двигателя

(19)

Для тахогенератора

. (20)


На основании функциональной схемы и полученных передаточных функций элементов системы составляем структурную схему рис. 13


Для построения фазового портрета необходимо записать систему дифференциальных уравнений.

Рассмотрим свободное движение системы (b=0) при этом x = a.

Дифференциальное уравнение нелинейной системы имеет вид

(21)

Представим уравнение в виде системы уравнений:

(22)

Построим фазовый портрет. Для простоты построения фазового портрета делаем некоторые упрощения:

1) Пусть обратная связь по скорости – отсутствует (К = 0).

2) Характеристика нелинейного элемента однозначна (рис. 14).

При этом:

(23)

С учетом принятых допущений система уравнений упрощается.

(24)

Построим характеристику для каждой зоны.

Пусть – a £ x £ a, ¦(x) = 0.

При этом исходная система имеет вид:

(25)

Решение этого уравнения имеет вид , т.е. наклон фазовых траекторий всюду постоянный (отрицательный).

Определим равновесное состояние системы из условия:


(26)

Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [– а, а]. Фазовые траектории на участке – а< x < a представляют собой прямые с коэффициентом наклона -1/Т 1 при различных значениях начальных условий.

На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.

Пусть х > a, . При этом исходная система нелинейных уравнений имеет вид

(27)

где c i - семейство изоклин, которое представляет собой прямые параллельные оси х, т.е. , где определяется из выражения для

. (28)

Таким образом

. (29)

Задаваясь значениями , строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.

Так как . Например, если , то a = 90°.

Пусть х < – a, . Построение выполняем аналогично, так как знак изменился, то будут другие углы пересечений изоклин фазовой траекторией. Фазовый портрет системы приведен на рис. 15.


Рис. 14 Рис. 15

Снимем упрощение К = 0, т.е. рассмотрим влияние отрицательной обратной связи по скорости двигателя на характер фазовой траектории.

При этом уравнения имеют вид:

(30)

Пусть , при этом переключение будет происходить при условии (а не условии х = а), это уравнение линии (рис. 16)


При этом количество перерегулирований уменьшается; можно подобрать такой наклон, при котором нет переколебаний.

Рассмотрим фазовый портрет без ограничений. В системе без ограничений фазовый портрет можно представить на трехлистной поверхности с наклонными гранями (рис. 17.) При этом лист 2 соответствует зоне нечувствительности z=0, лист 1 соответствует отрицательным значениям z, а лист 3 положительным. Вследствие гистерезиса имеет место частичное наложение листов.

Рис. 16 Рис. 17

Исследуем систему. Исследуем влияние отрицательной обратной связи по скорости двигателя (т.е. влияние величины – К). Пусть значение К увеличивается, при этом наклон прямых уменьшается, и может получиться, что срез будет более пологим чем наклон характеристики в средней части. Это приводит к частым переключениям. Такой режим называется скользящим. Если зона очень узкая, то движение как бы соскальзывает к установившемуся режиму (рис. 18а).

Если изменить знак обратной связи с отрицательной связи на положительную связь, то при этом изменится наклон линий переключения, и количество колебаний будет увеличиваться, система будет "раскачиваться". Система работает, как генератор и может появиться либо замкнутый цикл – автоколебания, либо расходящийся переходный процесс (рис. 18б).


Достоинства метода: простота и наглядность для систем 2-го порядка; пригодность для любого типа нелинейных элементов.

Недостатки: метод громоздкий для систем выше 2-го порядка, поэтому при n >2 не применяется.

Рассмотрим несколько примеров построения фазовых портретов нелинейных систем управления

Пример 1. Пусть задана система, состоящая из линейной части и нелинейного элемента (усилитель с ограничением по модулю) (рис. 19). Это кусочно-линейная система, так как на отдельных участках она ведет себя как линейная (в области) – а, +а[). Допустим в области (] – а, +а[) коэффициент усиления большой и система неустойчива а фазовый портрет характеризуется особой точкой "неустойчивый фокус". За пределами области коэффициент усиления мал, допустим, что при этом система устойчива и характеризуется особой точкой – "устойчивый фокус".

При больших отклонениях x > |a| общий коэффициент усиления системы мал, система устойчива, процесс затухает.

При малых отклонениях общий коэффициент усиления системы большой – процесс расходится к замкнутой траектории, которая характеризует наличие устойчивых автоколебаний (рис. 20).

В этой системе три типа движений: автоколебания; сходящиеся колебания; расходящиеся колебания



Пример 2. Пусть задана система с характеристикой нелинейного звена типа "зона нечувствительности" (рис. 21). Необходимо построить фазовый

портрет данной системы, определить наличие предельных циклов и проанализировать их устойчивость.

Построим фазовый портрет

1) При – a < x < +a f(x) = 0, а система уравнений имеет вид



Фазовый портрет в этой области представляет семейство прямых с коэффициентом к = -1, а состояние равновесия устойчиво по Ляпунову и представляет отрезок оси y = 0 на интервале – a

2) При x > +a f(x) = x – a, а система уравнений имеет вид

и угол пересечения фазовой траекторией изоклины по формуле a = arctg c, результаты приведены в таблицах 1 и 2.

Таблица 1

Таблица 2

3) При x < – a f(x) = x + a, а система уравнений имеет вид

Пример 4. Для заданной системы (рис. 26) построить примерный фазовый портрет.



Исходную схему можно представить в виде (рис. 27).

Построим фазовый портрет.

1) При –1 < x < +1 f(x) = x, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле

2) При x > +1 f(x) = 1, а система уравнений имеет вид


Для каждого с i определимугловой коэффициент наклона изоклины – к по формуле и угол пересечения фазовой траекторией изоклины по формуле a = arctg c.

3) При x < -1 f(x) = -1.

Левая часть фазового портрета строится аналогично правой.

Литература

1. Атабеков Г.И., Тимофеев А.Б., Купалян С.Д., Хухриков С.С. Теоретические основы электротехники (ТОЭ). Нелинейные электрические цепи. Электромагнитное поле. 5-е изд. Изд-во: ЛАНЬ, 2005. – 432 с.

2. Гаврилов Нелинейные цепи в программах схемотехнического моделирования. Изд-во: СОЛОН-ПРЕСС, 2002. – 368 с.

3. Дорф Р., Бишоп Р. Автоматика. Современные системы управления. 2002 г. – 832 с.

4. Теория автоматического управления. Учеб. для вузов по спец. "Автоматика и телемеханика". В 2-х ч./ Н.А. Бабаков, А.А. Воронов и др.: Под ред. А.А. Воронова. – 2-е изд., перераб. и доп. – М.: Высш. шк., 1986. – 367 с., ил.

5. Харазов В.Г. Интегрированные системы управления технологическими процессами: Справочник. Издательство: ПРОФЕССИЯ, ИЗДАТЕЛЬСТВО, 2009. – 550 с.

  • Метод гармонической линеаризации в проектировании нелинейных систем автоматического управления. [Djv-10.7M ] Под редакцией Ю.И. Топчеева. Коллектив авторов.
    (Москва: Издательство «Машиностроение», 1970. - Серия «Нелинейные системы автоматического управления»)
    Скан: AAW, обработка, формат Djv: Ilya Sytnikov, 2014
    • КРАТКОЕ ОГЛАВЛЕНИЕ:
      Предисловие (5).
      Глава I. Теоретические основы метода гармонической линеаризации (Е.П. Попов) (13).
      Глава II. Новая форма гармонической линеаризации для систем управления с нелинейными гистерезисными характеристиками (Е.И. Хлыпало) (58).
      Глава III. Метод гармонической линеаризации, базирующийся на оценке чувствительности периодического решения к высшим гармоникам и малым параметрам (А.А. Вавилов) (88).
      Глава IV. Определение амплитудных и фазовых частотных характеристик нелинейных систем (Ю.И. Топчеев) (117).
      Глава V. Приближенные частотные методы анализа качества нелинейных систем управления (Ю.И. Топчеев) (171).
      Глава VI. Повышение точности метода гармонической линеаризации (В.В. Павлов) (186).
      Глава VII. Применение метода гармонической линеаризации к дискретным нелинейным системам управления (С.М. Федоров) (219).
      Глава VIII. Применение асимптотического метода Н.М. Крылова и Н.Н. Боголюбова при анализе нелинейных систем управления (А.Д. Максимов) (236).
      Глава IX. Применение гармонической линеаризации к нелинейным самонастраивающимся системам управления (Ю.М. Козлов, С.И. Марков) (276).
      Глава X. Применение метода гармонической линеаризации к нелинейным автоматическим системам с конечными автоматами (М.В. Старикова) (306).
      Глава XI. Приближенный метод исследования колебательных процессов и скользящих режимов в автоматических системах с переменной структурой (М.В. Старикова) (390).
      Глава XII. Приближенное исследование импульсно-релейной системы управления (М.В. Старикова) (419).
      Глава XIII. Определение колебательных процессов в сложных нелинейных системах при различных начальных отклонениях (М.В. Старикова) (419).
      Глава XIV. Применение метода гармонической линеаризации к системам с периодическими нелинейностями (Л.И. Семенко) (444).
      Глава XV. Применение метода гармонической линеаризации к системам с двумя нелинейностями (В.М. Хлямов) (467).
      Глава XVI. Амплитудно-фазовые характеристики релейных механизмов с двигателями постоянного и переменного тока, полученные по методу гармонической линеаризации (В.В. Цветков) (485).
      Приложения (518).
      Литература (550).
      Алфавитный указатель (565).

Аннотация издательства: Данная книга входит в состав серии монографий, посвященных нелинейным системам автоматического управления.
В ней систематически, в достаточно полном объеме, изложена теория нелинейных систем автоматического управления, базирующаяся на методе гармонической линеаризации. Главное внимание уделено теоретическим основам метода гармонической линеаризации и его практическим применениям к непрерывным, дискретным, самонастраивающимся системам, а также системам с конечными автоматами и перестраиваемой структурой. Рассмотрены способы повышения точности метода гармонической линеаризации путем учета влияния высших гармоник. Предлагаемые способы иллюстрируются многочисленными примерами.
Книга предназначена для научных работников, инженеров, преподавателей и аспирантов высших учебных заведений, занимающихся вопросами автоматического управления.

"Теория автоматического управления"

"Методы исследования нелинейных систем"


1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

где – начальные условия.

Если отклонения не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат - в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией. Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом. Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. При этом: U(t)=0, e(t)=– x(t)


В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4)

где скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

Рассмотрим несколько случаев

Файлов GB_prog.m и GB_mod.mdl, а анализ спектрального состава периодического режима на выходе линейной части – при помощи файлов GB_prog.m и R_Fourie.mdl. Cодержание файла GB_prog.m: %Исследование нелинейных систем методом гармонического баланса %Используемые файлы: GB_prog.m, GB_mod.mdl и R_Fourie.mdl. %Используемые обозначениЯ: НЭ – нелинейный элемент, ЛЧ – линейнаЯ часть. %Очистка всех...





Безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных. В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы...

Рассмотрим химико-технологический объект, на вход которого поступает случайный сигнал и (/), а на выходе наблюдается случайный процесс у (/). При использовании корреляционных методов для идентификации линейных объектов с постоянными параметрами обычно полагают (или специально так подбирают тестовый сигнал), что случайные функции и (t) и у (t ) являются стационарными и стациопарно связанными в широком смысле, т. е. их математические ожидания постоянны, а авто- и взаимнокорреляционные функции являются функциями не двух, а одного аргумента, равного их разности.

При идентификации нелинейных динамических систем условия нормальности плотностей вероятности функций и (t) и у (t) и их совместной плотности вероятности, как правило, не выполняются, т. е. характеристики объекта определяются в условиях, когда совместные плотности вероятности функций и (t) и у (/) не гауссовы.

Следовательно, условная плотность вероятности функции у (t) относительно и (t) будет также не гауссовой. Регрессия выходной случайной величины относительно входной случайной функции при заданных значениях аргументов в общем случае нелинейна, а корреляция функций и (0 и у (t) гетероскедастична.

Таким образом, для идентификации нелинейных объектов уже недостаточно корреляционных методов, оперирующих математическими ожиданиями и корреляционными функциями случайных процессов. Ошибка в решении задачи идентификации нелинейного объекта корреляционными методами, используемыми для линейных систем, тем больше, чем сильнее регрессия функций у (t) относительно и (t) отличается от линейной и чем больше неравномерность математического ожидания условных дисперсий.

Задача идентификации нелинейных объектов, функционирующих в условиях случайных возмущений, представляет весьма сложную математическую проблему, которая в настоящее время находится в стадии разработки и еще далека до своего завершения. Тем не менее уже сейчас можно назвать ряд методов, которые хотя и нельзя считать исчерпывающими, однако дающие достаточно хорошее приближенное решение задачи идентификации нелинейных объектов статистическими методами. К таким методам можно отнести: 1) методы, основанные на использовании дисперсионной и взаимодисперсионной функций случайных процессов; 2) метод линеаризации нелинейной регрессии на участках гомоскедастич- ности математического ожидания условной дисперсии функции у (t) относительно и (t) 3) винеровский подход к идентификации нелинейных систем; 4) метод идентификации нелинейных систем, основанный на применении аппарата условных марковских процессов.

Кратко рассмотрим каждый из перечисленных методов.

1. Если зависимость между значениями случайных функций и (0 и у (t) нелинейная, то коэффициент корреляции между значениями случайной функции уже не может служить достаточно хорошим критерием для измерения тесноты связи между ними. Поэтому для характеристики связи между и и у используются

дисперсионные отношения , которые определяются через дисперсионные функции (2, 3].

Взаимная дисперсионная функция 0 yU (*, т) для действительных случайных функций у (t) и и (t) и автодисперсионная (дисперсионная) функция G„ K (*, т) для случайного процесса и (т) определяются соотношениями

где M { } - символ математического ожидания; M .

На основе определенных выше величин п уи, т| ук и R можно построить специальный TV-критерий для проверки гипотезы о линейности зависимости между сигналами у и и:

где п - число опытов; к - число интервалов в корреляционной таблице. Проверим с помощью TV-критерия гипотезу о линейности связи между y t и и т для объекта, рассмотренного в §6.4. Функция

N (т), построенная по входной и выходной реализациям системы, изображена на рис. 8.2 . В данном случае задача идентификации сводится к поиску неизвестных параметров объекта, которыми служат коэффициенты оператора в гильбертовом пространстве. Сигнал на входе системы раскладывается в^ряд подфункциям Лагерра:

с коэффициентами


Рис. 8.3.


Рис. 8.4.

Здесь п -я функция Лагерра g n (t) строится в виде произведения полинома Лагерра l n (t) на экспоненту:

Заметим, что изображение по Лапласу полиномов Лагерра па основании (8.19) имеет вид

Отсюда видно, что необходимые коэффициенты Лагерра можно получить, пропуская сигнал и (t) через цепочку линейных динамических звеньев (см. рис. 8.3).

Оператор нелинейной системы представляется в виде разложения по полиномам Эрмнта:

которые ортогональны на действительной оси - оо t . Из полиномов Эрмита строятся функции Эрмита:

с помощью которых оператор перехода от коэффициентов Лагерра входного сигнала к выходному сигналу записывается в виде


Соотношение (8.20) справедливо для любого нелинейного объекта и может быть положено в основу его идентификации. Методика идентификации значительно упрощается, если на вход подавать специальный сигнал в виде гауссового белого шума. В этом случае функции Лагерра представляют собой некоррелированные гауссовы случайные процессы с равными дисперсиями. При этом определение коэффициентов... к сводится к нахождению взаимнокорреляционной функции выхода системы и полиномов Эрмита:

Определение коэффициентов b { j ... к завершает решение задачи идентификации. Общая схема вычислений показана на рис. 8.4.

При решении задач идентификации химико-технологических объектов рассмотренный метод имеет ограниченное применение по ряду причин. К последним можно отнести, например, трудности, возникающие при переходе от коэффициентов b tj к к технологическим параметрам объекта. Метод не пригоден для нестационарных систем. Трудности реализации этой процедуры в режиме нормальной эксплуатации объекта также снижают эффективность метода. Наконец, необходимость усечения всех операций, связанных с предельными переходами, замена рядов конечными суммами являются источниками дополнительных вычислительных погрешностей.

4. Другой возможный подход к построению оптимальных фильтров нелинейных систем основан па использовании аппарата условных марковских процессов. Рассмотрим существо данного подхода на конкретном примере.

П р и м е р . Пусть полезный сигпал представляет собой прямоугольный импульс

момент появления которого t на отрезке 0 х Т требуется определить. Высота импульса А 0 и его длительность ч предполагаются известными. Сигнал, поступающий на объект, и (t)=s (*)+м> (*) есть сумма полезной составляющей s (0 и белого шума w (*), который описывается интегралом вероятности }


Top